CONTRIBUTIONS TO THE NATURAL HISTORY OF THE ISOPODA.

By Halriet Richardson, Collahorutor, Iticision of Marine Invertebrates.

PREFACE.

The difficulties which meet the systematist are but little understood or appreciated by those engaged in other fields of biological work. The morphologist, the embryologist, the physiologist give him but litthe encouragement and sympathy. Prof. Charles C. Nutting very adequately deseribed the situation in his recent address before the American Association for the Adrancement of Science and made an urgent appeal for cooperation with and leniency toward the man who toils over the "hard and often thankless task" of classification.

Those who have studied special groups of animals or plants realize the difficulties that have to be overcome and the problems that must be faced. The path is not always easy nor the way clear.
In the following pages the object has not been to give an exhanstive treatment of the Isopod group. The attempt is made to bring together by way of introduction facts of general interest, deseribing briefly the systematic position, structure, habitat, distribution, mode of life, development, and other points of interest in comnection with the group, and to present, in detail, descriptions and figures of a number of new species and gencra, which are the result of independent work on material collected by several different parties. These collections were made (1) by the U. S. Fish Commission steamer Albutross and by the U. S. S. Palos in Japan; (2) by Messrs. Jordan and suyder in Japan; and (3) by Dr. C. H. Gilbert at Panama and Mazatlan. Lastly, a large number of Bopyrida in the U. S. National Musemm collection have been worked up and also included.

No bibliography is given with the general introduction. A bibliography accompanies each section of the work. The publications which
have been of great service in preparing the general account of the gronp and freely used are those of T. R. R. Stebbing, G. O. Sars, F. Beddard, O. Harger. C. E. A. Gerstrecker, J. P. McMurrich, J. C. Schiodte and F. Meinert, James D. Dana, A. Giard and J. Bonnier, and H. G. Hansen. A large number of other papers have also been consulted.
Finally, I wish to express my gratitude to Dr. Theodore Gill, the distinguished naturalist, for his kindness in looking over the work and for his many suggestions in connection with it.

INTRODUCTION.

1. CLASSIFICATION AND SYSTEAIATIC POSITION.

The Isopoda are a group of Crustacea belonging to the large subelass Malacostraca, which. in contradistinction to the Entomostraca, includes all those forms having a gastric mill in the stomach; green glands, functioning as excretory organs, situated in the basal joint of the antemules: and not having a free namplius larva, the mauplins stage being passed in the egg.

The order Arthrostraca includes both the Isopoda and the Amphipoda, which have in common the following characters: The first thoracie segment is permanently fused with the head, and bears maxillipeds; the seven remaining segments are usually free and bear legs, although the first free segment and sometimes even the second free segment may be united with the head to form a carapace; the eyes are usnally sessile.

The Isopoda differ from the Amphipoda (1) in the general form of the body which is compressed dorso-ventrally, while in the Amphipoda, it is flattened or compressed laterally; (2) in the fact that respiration is carried on by the abdominal appendages or pleopoda, which are modified gills, while in the Amphipoda the gills are borne on the thoracie appendages; (3) in the difference in structure correlated with a difference in function in the pleopoda. The abdominal appendages in the Isopoda are usually broad plates or lamelle, all tive pairs more or less similar in shape and size. In the Amphipoda, the first three pairs are similar in shape and size, are long narrow appendages suitable for swimming, while the last three pairs are adapted for jumping.

Seven superfamilies" or tribes are usually recognized in the suborder Isopoda. The classification given by G. O. Sars is the one now generally adopted. He divides the Isopods into tribes according to the following characters: ${ }^{b}$

[^0]a legs of the first pair cheliform. Eropoda terminal. I'leopoda, when present, exclasively matatory 1. Chelifers or Tinidohdea. a' Legs of the tirst pair not cheliform.
b) Tropodat lateral.
e: Gropoda forming together with the teminal segment of the abdomen a caudal fan. Pleoporaforthemost part natatory. II. Flabeldifera or Cyyothondea.
c^{\prime} Uroporla valve-like, inflexed, arching over the pleopoda which to a groat extent are branchial .-............................ VII. Valvifera or Iboteoidea.
b^{\prime} Uropoda terminal or infero-lateral.
c Uropoda infero-lateral. Outer branch of the secomd and following pairs of pleopoda two-jointed... IV. Phiestoicoides.
c^{\prime} Uroporda terminal. Onter branch of the pleopoda never two-jointerl.
d Free forms.
e Pleopoda exclusively branchial, generally cosered by a thin opereular plate (the motified first pair) V. Asellota or Aselloidea
e^{\prime} Pleoporda fitted for air-breathing Vi. Oniscorbes.
l^{\prime} Parasitic forms. Pleopoda and uropoda sometimes absent. When present exclusively branchial, and not covered by any operculum.

VIl. Epicaridei or Bopyroidea.
The following list includes the numerous families which are comprised under these seven tribes:
I. Chelifera or Tanaifidea."

1. Apsendide.
2. Tanaida.
II. Flabellifera or Cymothoidea. a
3. Anthuridie.
4. Gnathiidre.
5. Cirolanidre.
6. Corallanitæ.
7. Alcironidre.
8. Barybrotidr.
9. Egidre.
10. Bathynomidie.
11. Cymothoidie.
12. Serolidte.
13. Spheromidar
14. Limmoriide.

1II. Valutreri or Inoteoldea. a

1. Arcturidie.
2. Idoteidat
3. Chatiliidie.
lV. Pimeatoicomea.
4. I'hreatoicidse.
V. Asellota or Aselloinea. a
5. Asellidat
6. Janiride.
7. Munnida.
8. Desmosomidae.
9. Munnopsida.

[^1]VII. ()Niscondon.

1. Oniscirlir.
?. Armarlillidiidas.
;3. Ligriata.
2. Trichoniscide.
3. Tylike.
4. Helleriida.
VII. Eplchainet or Porryoldea. ${ }^{a}$
5. Bopyridit.
6. Entoniscidas.
7. Dajile.
8. Cryptoniscidse.

Further subdivision into genera and species is not desirable, although the genera and species will be constantly referred to in the following pages.
2. EXTERNAL ANATOMY.
\therefore GENERAL FORM.
The body is generally flattened or compressed dorso-ventrally, differing in this respect from the Amphipodis, their nearest relatives, which have the body flattened or compressed laterally. The outline of the body varies considerably. Many forms are narow and elongate, the extreme of this type being found among the Anthurida; ${ }^{\circ}$ others are broadly oval, ahmost-circular in outline (the Serolide). Bilateral symmetry prevails in the group as a whole. The adnlt females in the parasitic Isopoda deviate from the symmetry of the larval condition, owing to the parasitic mode of life, the parasitism being also accompanied in some of the Epicaridea by a degradation in structure of such an extent that the characters of the group are entirely lost, their relationship being known only through a study of the early larval stages and through the males which retain the charaeter's of the group. Some of the Cymothoida, also parasites, are as symmetrical in the adult condition.

Sexaral dimorphism oceurs only in the parasitic tribe Epicaridea. The males in this superfamily are fom or five times smaller than the females and are always found permanently attached to the body of the female.

In both sexes the body is segmented, the number of segments into which the thotax and abdomen is divided differing in the varions subdivisions of the group). Fusion of the first and second segments with the head occurs sometimes, and often some or all of the abdominal segments are coalesced. The Dajida have the body very imperfectly

[^2]segmented. In the Entoniscidar alone there is no trace of segmentation whatever in the adult femate, and in the Cryptoniseide but slight traces of segmentation.

Many of the terrestrial Isopoda, the pill hugs, and some of the Spharomida, espeeially the genus Spharoma Latreille, are able to roll the body completely into a ball.

The head may be considered as composed of seren coaleseed segments, indicated by the number of paired appendages, the last coalesced segment, represented by the maxillipeds, being derived from the thorax. The eyes may be regarded as the appendages of a first or ocular segment; the antenne and antennule, the appendages of a second and third segment; the mandibles and the two pairs of maxillae representing the fourth, fifth, and sixth segments; the maxillipeds, as already stated. represent a first thoracic segment, which is permanently united with the head in all Isopods, the mame foot-jaws indicating their origin and function. (Harger.)

A second thoracic segment, which is usmally the first free segment, is also consolidated with the head to form a carapace in the Tamadie and the Serolidx; in the latter family sutures may or may not be present. The Anstralian species Crubyzos longicaudutus Spence Bate, as well as Areturides comutus Studer, and Stemusellus. Dollfus have the head and first free segment of the thorax united so as not to articulate, although they are separated by a suture in the first two mentioned. The males of the family Dajida also have the head fused with the first free segment of the thorax.

Still a third thoracic segment, or what is usually the second free segment, is united with the head in only one gemus, the genus S_{p} hoyrapus Norman and Stebbing.

1. Eyes.-The eyer, when present, are always paired. They may be small and simple and situated some distance apart, or they may be large, composite eyes, formed of numerous ocelli and so close as to be contiguons. Except in the Tamaida', where the eyes are placed on stalks, which are, however, never movable, they are invariably sessile. The ocular lobes in the Apseidida are spine-like projections of the carapace upon which the eyes are situated.

Eyes are wanting in the following Isopod genera: Typhlotumais Sars. Leptompathice Sars, Temeflle Norman and Stebbing, Stromgy/uree sars,
 Cirolemides Benedict, Sysecomis Harger, Plutyurthros Brandt. Tïtunethes Schiedte, Temmpisis Sars, Cellethure Norman :med Stebbing (eyesimperfectly developed or wathting). Leptanthurn Sals:, Iluotemais Norman and Stebbing (there are minute ocular lobes but no oves) Psendotenais Sars (eyes are imperfect or ahsent), Amuropus. Beddard,
 Sars, Itentrotion Sars, Ischenosomu Sars, Spherromides Dollfins, Stenasellus Dollfus, (Fecosphexroma Dollfus, Hypsimetopus Sayce. Mesotumais Dollfus, Hetericus (new name for Janirella Sayce, preocenpied "), and Pherentuicoider Sayce.

In a mumber of species belonging to well-known genera eyes are alsolacking. The list includes: Trichomiseus comernicola Budde-Land, Astucilla ciece Benedict, Rocinele typlitops Bomnier, Mumella danteci Bomnier, Brackenridyiu catcrnarmm Ulrich, Trichomiscus stygius Nemec, Cirolana cubensis Hay, Momolistris ceca Gersteeker, Asellus cumetions: Schiodte, Isendarmadillo carimulatus Sanssure, Conilera stygia Packard. Plereatuicus typicus Chilton, Iterponyse prenizoides Sars, and Serolis anartica Beddard. None of the Munnopsidix or Desmosomidx have eyes. Eyes are likewise usually absent among the Epicaridea.

Stebling says that the explanation for the fact that many of the genera of Tamaide are blind is to be found in their habit of living ensconced in the sand.

Many of the blind forms are deep-sea species, others are cavedwellers, and some have been found in wells at great depths.

Structural degencration of the eyes is found in some of the deep-sea Serolide, no retinula being present, although the vitreons body is represented (Beddard).
2. Antenuc.-There are two pairs of antenne. The first pair are sometimes called antemules, superior or upper antennæ. These are rudimentary in the Oniscoidea, are inconspicnons, never more than three-jointed, and sometimes wholly wanting (Helleriide). Usually the antemmles are composed of three peduncular joints and a manyjointed flagellum. The Valvifera, however, are without this multiarticulate flagellum, all the joints being consolidated to form a single clavate joint. The flagellum of the first pair of antemme in the Tanaide is rudimentary or sometimes wanting in the female. This is also true of Cyatluice Stebbing. females, Leptantluera Sars, females, Jenthopsis Beddard, Jiaropsis Kochler, Merprostylis Sars, and Nemnonische Sars, all having a rudimentary flagellum to the antennules. In the genera Ameropus Beddard and Nemnoniscus Sars, the first antenna have but two joints. In IMukrthrium ${ }^{b}$ Chilton, the antemnules have but three joints, the first two of which are flattened and form plates surrounding the anterior margin of the head. The Apsendida are characterized by having two multi-articulate flagelli to the superior antenna, the second flagellum heing sometimes called the secondary filament.

The secoud pair of antenna, inferior or lower antenne, are usually composed of five peduncular joints and a multi-articulate flagellum.

[^3]Memnepsis M. Sars, I'aremmme Sars, Plemrogonium, Sars, Nemmemische Sars, and Furyerne Surs are exceptions, having a six-jointed peduncle, and Eurydice Leach has only four joints to the peduncle of the second antennex. In Plakarthrinn (hilton the third and fourth joints of the peduncle of the second antenna are flattened to form plates. Variations are found in the structure of the flagellum. The joints of the multi-articulate flagellum are all united in one tapering joint in the following genera: Symmius Richardson, Erichsmella Benediet, Clountis Dana, and Eusymmerus Richardson. The flagellum of the lower antemne is rudimentary in both sexes in the Tanaide, in the genus .teropsis Koehler, Edoted Guérin-Méneville, E'pelys. Dana, Leptenthure Sars and Cyathure Norman and Stebbing; allso in the males of Pereanthura Bate and Westwood.

A few genera, Apsendes Leach, Stenetrium Haswell, Tenthe Bovallins. .Jenira Leach, Trichopleon Beddard, Juniropsis Sars, and C'ruregen.w Chilton are characterized by having an exopod or antennal scale, movable and ciliated, attached to the peduncle of the second pair of antenne.

The inferior anteme in the Epicaridea are greatly reduced. Both pairs in the females of the Entoniscide are transformed into lips. In the Cryptoniscida they are entirely wanting.

The antemma are of great length in many Isopods. In the genera Mumnopsis M. Sars, Eurycope G. O. Sars, and Arcturus Latreille they attain a great development, being many times longer than the body.

The greatly elongated second antenna of the Areturide are supposed to serve as a nursery for the young, which for some time after they have left the incubatory pouch are found clinging to the antenne of the parent. In this way they are protected and are able to receive the nourishment which the parent secures for them and for herself.
3. Mouth purts.-"The upper lip usually forms a plate projecting from the top of the oral aperture over the cutting edges of the mandibles, and may have an inner plate lying parallel to the outer. The lower lip is bilobed, or forms two pairs of lobes, of which the inner pair is mucli the smaller." "

The maxillipeds are a pair of appendages, consisting of a basal part, the protopodite, usually composed of one segment; a palp or endopodite, with varying number of joints; an epignath or epipodite, which usually consists of one article, and is affixed to the protopodite at its external margin. In the Chelifera the epignath extends within the branchial cavity; in the Agidae it is fusel with the protopodite; in Plukerthriem Chilton it is wanting.
There are two pairs of maxillie. The second, posterior or onter pair is three-lobed at the tip, the two outer lobes being articulated to the basal segment or protopodite. In the Oniseoidea the posterior maxillie
are laminar, with only a slight indication of a division into lobes. The inner, anterior or first maxilla are typically composed of two unequal lobes, the imner lobe being comparatively small, the outer lobe more robnst. The Egidæ have the anterior maxillæ composed of only a single lobe, the posterior maxille terminating in two lobes. The Tanaida also have but a single masticatory lobe to the anterior maxilla; the posterior maxilla are quite rudimentary, being simple romded lobes. The posterior maxille are wanting in C'uluthere Norman and Stebbing; both pairs are wanting in both sexes of the Gnathiida. In the Chelifera there is a backward-directed palpattached to the anterior maxillie. Exospheroma Stebbing has a small exopod attached to the first maxille. The first maxille in Falicor Moore have the outer joint in the form of a strong, curved spine, the inner joint covered by a cap at its tip; the second maxille are four-jointed. Plakarthrium Chilton has both first and second maxilla, consisting each of a single lobe. ${ }^{a}$
The mandibles are a pair of strongly calcified structures, often toothed along the imer margin or consisting of a single large tooth. Just below the cutting part is the molar expansion. A three-jointed palp is usually present. The palp is wanting in the Tanaide, the Oniscoidea, the Idoteidx, the Arcturidx, and in the following genera: Mancasellus Harger, Cruregens Chilton, Plemrogonium Sars, Macrostylis Sars, Ischosomu Sars, Echinopleura Sars, Echinozone Sars, Plakerthriem Chilton, and in the following species: Memopsis (?) australis Beddard.

The Cymothoidæ, the Limnoriidæ, the Armadillididæ, the Oniscidx, the Corallanidæ, the Alcironidæ, the Agidx, and the Barybrotidæ have no molar expansion to the mandibles, as is also true of the following genera: Ega Leach, Tencopsis Sars, Anarthere Sars, and Munnopsis Sars.

In the females of the Gnathiidx the mandibles are entirely wanting and the maxillipeds reduced. In the males the mandibles are powerful structures, extending some distance in front of the head.
The mouth parts of the Anthuridæ are suctorial. In some genera of this family the molar process of the mandibles is developed into a sort of semicircular saw.

With the exception of the maxillipeds all the month parts are lost in the males of the following genera: Porutanuis Dana, Typhlotenuis Sars, Leptognathic Sars, and Alonoteneris Norman and Stebbing.

The oral parts in the Epicaridea are much reduced, only the mandibles and maxillipeds, being distinctly developed.

> C. THORAX.

The thorax, pereion or mesosome, is normally composed of seven free segments, articulating each with the other. Variation as to the
number of segments is found; first, in the Tanaidar, in the mates of the Dajida and in the species Crobyzos: Immicandutus and Apcturides cornutus, where the first free segment is fused with the head; secondly, in the Serolida, where the first free thoracic segment is united with the head, the five following segments being free, the seventh segment, however, differing in this respect that it is represented only on the rentral side by a short sternum, there being no indication of it on the dorsal surface; thirdly; in the genus siphyrapus Norman and stebbing, one of the Apseudida, where the first two free segments are fused with the head; fourthly, in the genus Isclmosomul Sars, where the fourth and fifth segments are united to form a colummar center; and finally in the females of the Guathide where consolidation occurs in the fourth, fifth, and sixth segments.

In many Isopods the lateral parts of the segments are produced as broad plates on either side of the body, these plates being often distinetly separated dorsally, with the exception of the first, from the segments. They are the epimeral plates or coxopodites. These epimera in many genera are firmly coalesced with the segments with no sutures evident as an indication of their muion. The epimera of several segments may be fused with the segments, while those of the following segments may be quite distinct. In many species of Nerocilu Leach the epimera are very long and greatly produced, as is also true of all the deep-sea species of the Serolida, especially in the males, with the exception of S. cunturcticu Beddard.

The segments of the thorax are more or less equal in length, the greatest deviation in this respect occurring in the genus Astacilla Cordinor and in the genus Arcturus Latreille, where the fourth thoracic segment attains great development, being elongated to such a degree in Astacilla that it becomes equal to all the other six segments in length. Niesce Leach has the sixth segment of the thorax larger than the others and produced backward in a bidentate process. Huswellia Miers, also a genus of the Spheromide, has the last thoracic segment produced in a broad plate or shield over and beyond the pleon.

In Coldunthura Richardson the last segment of the thorax is abruptly so small and short that it might easily be mistaken for the first abtominal segment. Not only the last segment, but also the first, in the Guathiida is very small, the last segment being hardly distinguishable from the segments of the abdomen.

1. Leys.-The legs are usually fourteen in number, arranged in seven pairs, one pair for each of the seren thorate segments. The Gnathiidae have hut six pairs of these appendages. those of the last segment being wanting. This is also true of the following genera of Anthuridar; Hyssumre Norman and Stebhing, (ioureypus Chilton, and Colanthura Richardson. The genns Uropodias Richardson is unique among the Armadillidix, and I/(ry)emy,r Sars among the Cymothoidae. in also lacking the appendages of the last thoracie segment. In all
these cases this embryonic or larval chatracter is permanently retained in the adult condition.
Many of the parasitic Isopods, such as the Epicaridea, differ markedly in their structure from the free forms of other Isopods. For example, the females of the family Dajide have but five pairs of thoracid feet, crowded together around the oral area, and Branchimpliny,rus Caullery, a recently deseribed genus of the family, has but four pairs of legs present in the adult female. Phryous abdominalis Kroyer, an Epicarid species, has all the thoracic legs present on one side of the body in the female, while on the other side they have all disippeared with the exception of the first.
There is no trace of thoracic feet in the females of the Cryptoniscida, parasitic on the Amphipoda and other Isopoda, the Ostracoda and the Cirripedia, especially a parasitic family of Cirripedes, the Rhizocephala.

The males of the Entoniscidæ have the serenth thoracic segment without appendages, the other six segments sometimes with rudimentary feet; the female also has rudimentary feet.

The legs are composed of seven joints. Beginning at the proximal end, or their point of attachment with the thorax, these joints are: The coxa or coxopodite, the basis or basipodite, the ischium or ischiopodite, the merus or meropodite, the carpus or carpopodite, the propodus or propodite, and the dactylus or dactylopodite. The dactylus is sometimes furnished with an ungulus, which may be uni-, bi-, or tri-fid. The females in the genus Kepon Duvernoy have the feet euding in inflated joints without unguli.
Variation in the number of joints is found among the Gnathiidæ where the first gnathopods are only two-jointed with the males, are "opercular, the first joint being a large pyriform plate, fringed with sete on the convex inner margin and containing three semitransparent calcareous plates, supposed to indicate the same number of original joints."" In Eucognathia gigus (Beddard) the first gnathopods in the male are only six-jointed. Chatelia Dana has the sixth and seventh pairs of legs terminating in an extremity composed of numerous joints.

In many Isopods (Oniscoidea) the legs or periopods are all similar in shape and size and are ambulatory in character. Difference of structure is to be found, however, in other groups. The Tanaida, for example, have the first pair of legs or gnathopods transformed into chelipeds. The chelr of the males are much stronger and more rohnst than those of the females, and in some genera, as Leptochelid Dana, they are greatly elongated in many of the species. In the Apseudide the first and second gnathopods are modified, the first pair
being chelate, the second pair, with the exception of lemgurepsemeles Whitelegge, terminating in a broad flat joint surronnded with mmerous flattened spines. The Arcturida have the four anterior pairs of legs differentiated from the other three pairs: they are slender. feeble. directed forward, and strongly ciliated on their inner margins with long slender hairs; the last three pairs are entirely different in structure, being ambulatory in character.

The Munopsida have the first pair of lege shorter than the thee following pairs and prehensile in structure; the three following pairs are ambulatory and greatly elongated; finally, the last three pairs are fitted for swimming, being matatory in character, and have the two distal joints flattened and provided with numerons hairs and spines. Among the Janirida there is more or less modification in the structure of the first pair of legs in several genera. Stenctrium Haswell and Jamna Bovallius have the first pair of legs chelate, these being the only genera of this group which are so characterized. The genus Curpicts Richardson, belonging to the same family, is remarkable for the greatly elongated first pair of legs and the peculiar development and enlargement of the joints. In many genera and some families of Isopods the first pair, the first two pairs, the first three pairs, or all the legs are prehensile, the propodus being enlarged or dilated and the dactylus reflexed.

The Serolide have the last pair of legs small and feeble in proportion to the others, correlated with the rudimentary condition of the seventh thoracic segment. In Tanais stanfordi Richardson the second pair of legs are small and feeble, although similar in structure to those following.

Munna menzelandica Chilton from New Zealand is a species in which the first gnathopods of the adult male have a remarkable form, with the second joint small, the third "very thick and strong, hollowed anteriorly to receive the distal end of the limb when bent back; carpus expanded distally, mallet shaped; propodus small and rounded."

In certain genera of the Apsendidx, Apsendes Leach, Pereepseendes Sars, and Sphypropus Norman and Stebbing, there is a minute and inconspienous two-jointed exopod at the base of the first and second gnathopols. The exopod is absent on the first pair of legs in I'aguretpremdes: Whitelegge. The genus Leiopus Beddard, belonging to this family, has a three-jointed exopod at the base of both pairs of gnathopols. The supposed function of these exopods is to keep a constant current of water in the branchial chamber, and they are in rapid morement in the living animal (Stebbing).

Papillose athesive processes, which are supposed to represent exopods, are dereloped on the coxal joint of all the legs of hepoul Duvernoy and Leidyu Cornalia and Panceri, although they are in a rudimentary
coundition on the last three pairs of legs in hepon. In Gropsicepon (iatrd and Bomier, the alhesive processes are oral, not warty. In Cuncricepon (riard and Bonnier, these processes are rudimentary; in Eroyne Risso and Portunicepon Giard and Bonnier, they are strong and muscular.
2. Jraswinimm. The marsupium or brood cavity of the female consists on its outer surface of lamella or plates aflixed to the sides of the segments at the origin of the legs and overlapping on the rentral side in the median line. Sometimes the plates do not completely cover the fegg which are contained in the brood cavity, as in some of the parasitic Isopoda, the Bopyrida, a large area being left which diseloses the eggs. The lamellee or oostegites, which are probably modified epipodites, are nsually in pairs of four, one pair for each segment from the first to the fourth, inclusive, or from the second to the fifth, inelusive.

The Crmothoide differ in having five pairs of plates attached to the first five segments and small supplementary plates on the last two segments. The Cirolanide also have five pairs of lamella and supplementary ones issuing from the epignath of the maxillipeds.

In Anthure Leach the incubatory ponch extends over only three segments of the thorax-the third, fourth, and fifth. In Asturilla Cordiner, Areturellu Sirrs. Temuis Audouin and Milne Edwards, Peendotenuis (r. O. Sars. C'mptocole Sars, and Mumopsis allastrelis Beddard, it is confined to a single segment, being formed of only two plates attached to the fourth segment in Astacilla and Arecturellu and to the fourth free segment, otherwise the fifth segment in the three genera of Tanaida mentioned. The Gnathiidæ have no true ineubatory pouch.
The lamella in the Epicaridea are usually in pairs of fire as in the Cymothoidx. With some genera, as, for example. Phry,rus Rathke, those of the two sides are very unequally developed, the plates on one side being much larger than those on the other side. In the Dajide the brood cavity extends as sacs along the sides of the body.

The young are retained in the marsupiom for some time after they are hatched from the egg.

It has been pointed out that the structure of the incubatory lamelle indicates that they have a respiratory function, and are, to a certain extent, branchial in character, assisting in the oxygenation of the hlood.
D. ABDAMEN.

The abdomen, pleon or metasome, is typically composed of six segments, fire short ones and a large terminal or caudal segment, which comprises the telson. The following modifications occur: The five anterior segments are coalesced with the caudal segment in the super-
family Asellota with the exception of the genus stomesellus Dollfus, which has the first three segments free and well developed; in the following genera of Idoteide, Stenosomo Leach, Symidutea llarger, Crabyzos Spence Bate, Glyptidotea Stebbing, Eussymmerus Richardson, Erichsonclla Benedict, Epelys. Dana; in the Spheromid genus ('recosphreroma Dollfus; in the genus Auarthrura sars, one of the Chelifera; and in the Cymothoid genus Ourozenhtes Milne Edwards. The pleon is also unsegmented in the males of the genera Dijus Kroyer and Notopheryxus Sars, in the females of Aspidophrycus Sars, in the males and females of Zomopleryxus Richardson, all belonging to the family Dajidar. Phryxus Rathke has the pleon fused in the male, as is also the case with Argeiu Dama, Stegophryxus Thompson, Diphophiny.rus Richardson, Munnidion Hansen, Parargeiu IAansen, Buthyygyye Hansen, Plenrocryptu Hesse, Purapenaon Richardson, and Ergyne Risso, all Epicurid genera. Segmentation is indicated at the sides of the pleon but not on the dorsal surface in the adult female of Bopyrus Latreille and Bopyrina Kossman. In the Areturide the segments of the pleon are more or less coalesced.

The first five segments are mited into one in the Spheromida, which, together with the terminal segment, forms a biarticulate abdomen, the first segment of which usually bears suture lines at the sides indicating coalescence. There are two exceptions: Sphaeromides raymondi Dollfus, supposed by Dollfus to be an archaic form, has all five segments anterior to the caudal segment free; (fecosplizroma Dollfus also differs from the other Sphrromidre in having all the pleonal segments fused to form a single segment. The fusion of the five anterior segments into one is characteristic of the Helleriida, two pairs of short lateral sutures marking oft the third from the fourth, and the fourth from the fifth segments. The first five segments are also united in the females of Anthure Leach, and C'yonthure Norman and Stebbing, thongh in the male they are partially distinct. Paridutea Stebbing also has a biarticulate pleon.

The pleon in Idutea Fabricins, Colidotea Richardson, and Symmius Richardson is made up of two short segments and a large terminal segment.

The family Serolidar, the genera Edotea Guérin-Méneville, Zenubianu Stebbing, Chiridutat Harger, and Chietilia Dana have the pleon composed of three short segments and a terminal segment. Stemusellus Dollfus also has three segments anterior to the caudal segment.

The following genera, Cleantis Dana and Glyptonotus Eights of the Idoteidæ, have a five-jointed abdomen, four short segments preceding the caudal segment. This is also true of Tancis Audouin and Milne Edwards, with the exception of T. robustus. Moore.

In the Anthuridat the sixth segment of the ahdomen is nsually distinct from the telson, as, for example, in Anthure Lach, Antheluree

Norman and Stebbing, at least in the type species, I'armothom Bate and Westwood, Celuthure Norman and Stebbing, and Cruregens Chilton.

The members of the family Phretoicidse have the fifth segment of the abdomen longer than any of the four preceding segments, and the telson distinct from the sixth segment at the sides, but fused dorsally. The former character distinguishes the Cumacea, but is not found in any other of the Ispoda.

The lateral parts of the abdominal segments in the Bopyrid genus lone Latreille are produced into branched appendages, which are jointed in some species.

1. Uropordi.-The uropoda are appendages of the last abdominal segment. In the Chelifera they occupy a terminal position and are multiarticulate. In this group there is usually a peduncular joint and either one or two jointed branches. The Oniscoidea and Asellota have terminal uropoda, but the branches in these tribes are usually not jointed but styliform. Of the last-named superfamily the uropoda are simple, consisting only of a single branch in the genera Mumm Kroyer, Leptaspidia Bate and Westwood, Munella Bonnier, and. Fanirella Bonnier; they are single branched but two-jointed in Desmosoma Sars, Mumopsis Sar's, Echinopleura Sars, Macrostylis Sars, Ischnosome Sars, and Tlyuruchu Sars; single-branched but from three to five-jointed in Aconthocope Beddard. The last-named genera of Asellote resemble the Chelifera in the jointed character of the uropoda.

Still more remarkable is the genus Dendrotion Sars, in which the uropoda issue from the dorsal surface of the caudal segment.

The Flabellifera or Cymothoidea have uropoda which oceupy a lateral position, and consist of a basal joint and two more or less oval branches, an exopodite and an endopodite. One family in this tribe, the Anthurida, have one branch, the outer branch, occupying a superior position and arching over the telson. In the Sphreromidar the inner branch or ramus is fixed and immovable, only the outer branch heing free. Cixcospheroma Dollfus differs from the other Spharomida in having the uropoda united with or consolidated to the sides of the pleon on the under side, the union of both branches being sometimes complete or perhaps the exopodite may be visible but altogether rudimentary. Acutuloided Chilton has the outer branch of the uropoda wanting; in Cassidimu Milne Edwards the outer branch is rudimentary. Codonophilus Haswell, a Cymothoid genus, has but a single ramus to the uropoda. The genera inuropus Beddard and Brencherropus Moore have submembranaceons branches which are concealed beneath the telson.

The uropoda in the Valvifera or Idoteoidea are transformed into opercular valres, which close like doors over the pleopoda, meeting in the median ventral line. These valves are attixed to the terminal seg-
ment only along the lateral margin, and when folded meet in the «enter.

The mopoda of the 'Tylida and Inelleriidx, both families of the tribe Oniscoidea, wre also transformed into opereular valves which fold over the terminal segment, below the pleopods, howerer, while in the Valvifera they inclose the pleopods.

Many of the Epicarid genera are withont appendages to the terminal segment of the body, an, for example, Dujus Kroyer, males; Aspidophryxus Sars, females only; Sotopheryrus Sirs, males and females; Zomophryme Richardson, males and females; the Cryptoniscida, females only; the Entoniscida, males and females; and the following Bopyrid genera, Ithelges Hesse, males and females; I'leurocrypta Hesse, males; Pseudione Kossman, males; Ergyme Risso, males; Argein Dana, males; Bopmrus Latreille, males and females; Prolropymis Giard and Bonnier, males and females; Bopyrinu Kossmann, males and females; Stegophryrus Thompson, males; P’urargein Hamsen, males; Momnidion Hansen, males; Bronchiophrymes Canllery, males and females; Buthygyge Hamsen, males; Bopmproides Stimpson, males and females; Portmnicepon Giard and Bonnier, males; Concricepon Giard and Bonnier, males; Gyge Cornalia and Panceri, males; Phrycus Rathke, males and females; I'trapenaom Richardson, males.

In a number of the Epicarid genera the uropoda are single branched appendages. This is true of Dıjus Kroyer, females; Plemrocrypte Hesse, females; Pendione Kossmam, females; Leidya Cornalia and Panceri, males and females; Kepon Duvernoy, females; Gropsicapon Giard and Bonnier, females; Cuncricepom Giard and Bonnier. females; Portrmicepom Giard and Bomnier, females; Ergyme Risso, females; Gigantione Kossmamn, males and females; Ione Latreille, males and females; Ar!feia Dana, females; I'urargeid Hansen, females; C'ryptione Hansen, males; Entophilus Richardson. males: Gyge Cornalia and Panceri, females. With this tribe of Isopoda it is the exception for the mopoda to be biramons, although they are donble-branched in some genera.
O. I'repodu. - Respiration is effected by means of pleopoda, appendages of the abdomimal segments, usually in pairs of fire, one pair for each of the first five segments. The pleopoda in general ronsist on each side of a basal segment carrying two lamella or rami. In the male the inner lamella of the second pair bears a slender stylet.

The first three pairs of pleopoda in the serolida are natatory, the two following patrs branchial; in the Aretmider, the two anterior pairs are natatory, the three posterior pairs exclusively branchial. The pleopoda are matatory or branchial in the (mathiider; they are adapted for both swimming and respiration in the tribe Flabellifera, with the exception mentioned. In the Asellota and the Epiearidea and for the most part in the Idoteida the pleopoda are exclusively hranchial.

Quite a different mode of respination is effected in the tribe Chelifera from what is found in the other Isopoda. The pleopoda are used for swimming and are never branchat in character, the respiratory function being carried on by means of branchial chambers situated under the sides of the posterior part of the carapace (Stebbing).

The Oniscidae, a terrestrial family, have air sacs developed in the pleopoda, sometimes the opercular branch of two or three pairs being provided with trachea, and sometimes the opereular branch of all the pairs contaning tracher. This adaptation is probably due to their aterial mode of life.

Certain genera of Chelifera are remarkable for having no plcopoda, as, for example, Tenaella Norman and Stehhing, Stromgytura G. O. Sars, and Anerthrere G. O. Sars. This character is usually correlated with a fusion of the abdominal segments. The genera eryptocope G. O. Sars, and Maplocope G. O. Sars have rudimentary pleopoda in the female. There are but three pairs of pleopoda in Tanais Audouinand Milne Edwards and in the genus Parapsendes Sars there are but four pairs. The gencra Pseulotancis G. O. Sars and Leptogmuthice G. O. Surs have pleopoda which are all developed and ciliated or altogether absent in the female, but always fully developed and ciliated in the male. Pagurapseudes Whitelegge has never more than three pairs of pleopoda, often only one pair, especially in the female.

The first pleopoda are wanting in both the Tylide and the Helleriida and in the females of the Asellida. Leiopus Beddard, a genus of the Apsendidx, has one of the branches of all the pleopoda two-jointed, and the genera Pheatoicus Chilton, Phreatoicopsiss Spencer and Hall, and Mypsimetopus sayce have the outer branch of the second and following pairs of pleopoda also two-jointed, this jointed character of the pleopoda not being found elsewhere among the Isopoda, thongh a feature of the Amphipoda.

In Bathynomus Mihe Edwards there are supplementary ramified branchise at the bases of the pleopoda.

As previously stated, the inner branch of the second pair of pleopoda farries a stylet in the males. In the Ligiidre, the Oniscida, the Trichoniscide, and the Armadillidide hoth first and second pairs of plepoda are sexual in the males, the imner branches of which are modified into sexual organs, those of the first pair often being coalesced in the Oniscidre; in the females these branches are rudimentary.

In the Asellide the pleon in both sexes has the first pair of pleopods quite small, while the outer lamella of the second pair are very large, forming a sort of operculum, the lamelle of which are not fused together in either sex. The female has four pairs of pleopoda; the male has fire pairs, with an additional pair of very small biramous appendages immediately behind the first pleopodia.

In the Janiridæ, the Desmosomidx, and the Munnopsidæ the first pair of pleopoda in the female forms a subeircular operculum, while
in the male the first pair together with the second forms a compound operculum, consisting of a small oval plate on cither side of a merlian elongated plate, divided by a central suture and terminating in two pointed lobes.

In the genus Comilera Leach the first pleopoda are oporeular, with both branches hard.

Pleopoda are wanting in the following Epicarid genera: Aryeia Dana, males only; Bopyrus Latreille, males; Bopyroides Stimpson, males; Gy!⿰亻 Cornalia and Panceri, males; Bopyrimu Kossmam, males; I'sendione Kossmann, males; Dujus Kroyer, males; Aspidophrymes Sars, females and males; Notopleryms Sars, males and females; Buthygyge Hansen, males; Athelyes Hesse, males; Branchiophryxus Cimllery, males and females; Zomophmaxus Richardson, males; Stegophrymes Thompson, males; Diplophry, Richardson, males; Iortmicepon Giard and Bonnier, males; I'aropenxom Riehardson, males; Pliryxus Rathlie, males; Pleurocrypta Hesse, males; Ergyne Risso, males: males of the Entoniscida. The pleopoda are represented by fleshy ridges in the females of Bopmroides Stimpson.

The pleopoda are rudimentary in the following genera: Dajus Kroyer, females (except the first pair); Leidya Cormalia and Panceri, males: Bopyrns Latreille, females; Poubofymos Giard and Bonnier, males; ('ancricepon Giard and Bonnier, males; Gigientione Kossmann, males.

In some Bopyrid genera the appendages of the pleon are threebranched, as for example: Phyllodurus Stimpson, females; Stegry, hry.cus Thompson, females; Crancricepon Giard and Bonnier, females; Grupsirepon Giard and Bonnier, females, has the appendages of the first four segments three-branched, those of the fifth segment hiramons; Stegias Richardson, females, has the pleopoda of the first three segments three-branched, those of the last two segments twobranched.

Diploplerymes Richardson, females, has the pleopoda four-branched, eight for each of the four abdominal segments.

The appendages of the pleon are coarsely pimnate or fringed in Gropsicepon" Giard and Bonnier, Leidya Cornalia and Panceri, Portunicepom " Giard and Bonnier, and Erogme Risso. In ('ramericepmen ${ }^{a}$ Giard and Bonnier, the dorsal branch of the pleopoda is tubereular.

In a number of Epicarid genera the pleopoda are single-branched in the adult female.

3. INTERNAL ANATOMY.

In the typical form the alimentary canal is a straight tube, without convolutions. It consists (1) of a short, muscular asophagus lined

[^4][^5]with ectoderm; (2) a stomach also lined with eetoderm and provided with a ". gastric mill," which is a chitinous apparatus consisting of nine plates, seven of which lie in the anterior part, two in the floor of the stomach; (3) an elongate intestine, more or less dilated at its anterior extremity, and lined for the most part with ectoderm, the endodermal portion extending but a short distance from its anterior connection with the liver lobes. There is no cecal enlargement at its posterior extremity. The liver lobes or hepatic ceca consist of four elongate, more or less coiled, backwardly directed tubes, opening into the alimentary canal at the union of the stomach and the intestine.

The heart is an elongate tube, varying in length in the different groups, and situated in the pleon for the greater part, except with the Chelifera, where it occupies a position in the anterior part of the thorax. In the Asellidæ the heart is confined to the thorax, extending from the pleon forward. Surrounding the heart is a pericardium of connective tissue, a cavity or chamber intervening, in which the blood freely circulates. One, two, or three pairs of ostia place the heart into communication with the pericardial cavity. From the anterior extremity the dorsal aorta arises, sometimes being constricted off from the heart, and then again being simply an extension of the heart forward, with no differentiation of the two parts, the one vessel gradually becoming narrower from the posterior to the anterior extremity. Considerable variation exists in the manner in which the aorta subdivides. In some cases it extends forward to the lower lip without branching, arteries arising from the heart itself supplying the various parts of the body. It may divide very near the heart, each branch giving off arteries, or some little distance from the heart, or it may continue as a straight tube, giving off branches in each segment. Two valres open into the aorta from the heart. In position the main part of the circulatory system lies dorsal to the alimentary canal.

The nervous system consists of a brain or supra-cesophageal ganglion, composed of a number of more or less fused ganglia, connected by œsophageal commissures with an infra-œsophageal ganglion; from the infra-cesophageal ganglion there extends a double ventral nerve cord, comnected by double ganglia more or less fused and inclosed in a single nerve sheath, one ganglionic mass being present in each segment of the thorax, the abdominal ganglia being more or less fused, so that from the fused mass it would be impossible to tell the number of corresponding abdominal segments. Commissural nerves are given ofl in each segment from the rentral nerve cord.

Lying in between and parallel to the commissures connecting the thoracic ganglia in the region of the thorax is a nerve which has been referred to the sympathetic system. It does not pass over the ganglia in each segment, but is fused with each anteriorly and starts again on the other side. At its union with the ganglia fibers extend to the commisisures on either side.

From the anterior portion of the supra-esophageal ganglionic mass two pairs of nerves are given off to the antenna and antemules. They arise independently from the brain. Some little distance back of these is the place of origin of the optie nerves, which supply the eyes. From the central ganglionic masses of the ventral nerve cord branches go to two lateral ganglionic plexuses, lying under the hypodermis, which are the elements of the peripheral nervous system.

The visceral nervous system consists of an anterior and a posterior division. The anterior system starts from the ciremm-esophageal commissure and imerrates the cesophagus, stomach, and liver. There is a ganglion near the upper lip and one in front of the stomach. The posterior system has its origin in the fused abdominal ganglia and has no ganglionic differentiation.

The reproductive organs are paired organs lying on either side of the body in the region of the thorax and open by means of ducts at the base of the fifth pair of legs in the female, the male duct opening at the posterior margin of the seventh thoracic segment.

Respiration is effected by means of some or all of the branches of the pleopoda, these branches being thin and vascular in structure and aeting as gills in acrating the blood.

4. DEVELOPMENT.

Within the last few years, Dr. J. P. McMmrich ${ }^{a}$ has made a thorough and exact investigation of the development of some of the Isopods, having studied Jara, Asellus, Ligia, C'ymothoa, Porcellio, and Armadillidium.

He proved conclusively that the segmentation of the egg is centrolethical, the cells formed by the centrally situated segmentation cell gradually migrating to the surface and inclosing the yolk. The original centrally situated single cell is stellate in shape, with protoplasmic fibrils extending from it to the peripheral layer of protoplasm. The egg is inclosed in two membranes, the chorion, which surrounds it before the polar bodies are given off, and the vitelline membrane, which is formed by the activity of the protoplasm of the egg, during the period occupiel by the maturation of the ovim.

The first plane of segmentation lies at right angles to the long axis of the egg, the division effecting only the centrally situated cell. The daughter cells thus formed remain comected by protoplasmic strands. The second division results in the formation of four stellate cells, the two pair's rotating throngh an angle of forty-five degrees; the cleavage in this stage bears most resemblance to the spiral form. The third division result in the formation of eight stellate cells. The next stage is the sixteen-celled stage. In the thirty-two-celled stage the cells

[^6]finally reach the periphery, when segmentation first begins to appar on the surface. The egeg now becomes a syneytial blastula, the cavity being completely filted with yolk. At this stage the histological differentiation of cells is rery complete, althongh it is indicated in the preceding stage. In Jixrm, four cells, termed the vitellophags, occupy the posterior pole. Surrounding them is a circle of twelve cells, the mesendoderm cells. The sixteen ectodem cells are scattered over the remainder of the surface of the egg. In the next stage, the sixty-fourcelled stage, the vitellophags have increased to cight in number, the mesoderm cells forming a double ring around them, cach ring consisting of twelve cells, and the number of ectoderm cells is doubled. In the succeeding stage the vitellophag vells do not take part in the division. One cell of the posterior circle of mes-endoderm cells divides in a different plane from the others, and one of the daughter cells probably gives rise to the endoderm which forms the liver lobes. In Avellus the differentiation of vitellophags from the mes-endoderm is distinct at first but becomes inconspicnous later, and the differentiation of the liver endoderm is questionable. In Armarlillidium and Porcellio no differentiation of the three parts of the mes-endoderm is recognizable, although the mes-endoderm in these forms is equivalent to the mesoderm, the liver endoderm, and the vitellophags as found in .Jera.

In the next stage the cells of the mesoderm, endoderm, and ectoderm increase in number and migrate to the ventral surface where the embryo is to be formed. The concentration of the mesoderm cells results in the formation of a mesoderm plug, which becomes gradually covered by ectoderm cells, the teloblasts, arising from the posterior row of ectoderm cells, and arranged in regular longitudinal and transverse rows. When the mesoderm plug is about half covered with ectodermal teloblasts, the vitellophags in Jera begin to migrate into the interior of the yolk. The ectoderm cells of the anterior portion of the body, together with the mesoderm cells, contained in the mesodermal pling, which has gradually migrated and become distributed in that region, represent the naupliar part of the embryo. The liver endoderm migrates also to this region with the mesoderm. The posterior or metamanphar region lies behind it and has resulted by the growth of the teloblasts.

The mesoderm cells in the naupliar region, lying heneath the ectoderm cells, become arranged in two divergent bands. In ofereatramsverse band joins the anterior ends of the two lateral bands, but this is not distinct in the other forms. As the appendages bud out the mesoderm cells migrate into their interior, forming a solid support for them. The liver lobes, formed from the liver endoderm, begin to appear about this time as hollow spheres, open toward the yolk, one on either side at the level of the first maxillie.

The metanaupliar mesoderm is produced hy teloblastic growth. The mesoblast cells hecome arranged in a very definite manner in transierse
rows. Each row of cells is equivalent to a segment. The mesoderm cells divide more rapidly in the anterior serments, resulting in the formation of masses of cells on either side of the median line corresponding to the limb buds, which appear on all the segments anterior to the last seven. The last seren represent the six abdominal segments and the telson, the sixth abdominal segment in the adult being fused with the telson in all Isopods.

The limb mesoderm and the mesoderm of the lateral masses, which lies on either side of the limb mesoderm, become converted into musele and a certain amount of connective tisme.

The liver lohes unite erentually with the posterior end of the stomodeal invagination, or stomach, and the anterior end of the proctodeal invagination or intestinc. The stomodeal invagination appears early and comes to lie between the antemmules and the antennae. As the invagination deepens into the yolk, the posterior extremity enlarges to form the stomach, the posterior extremity of the stomach miting with the liver lobes. The proctodeal invagination occurs later than the stomodeal invagination. It appears first as a patel of cells lying behind the teloblasts.

The vitellophags take part in the formation of connective tissue, musele tissue, blood corpuscles, and perhaps even the heart. The vitellophags are therefore mesoderm cells.

The cerebral ganglia, the antennary ganglia, and the antennular granglia of the namplius fuse to form the syncerebrum of the adult.

The young leave the brood pouch with the last pair of legs undeveloped. In most Isopodat there is no metamorphosis, the young being similar to the adult. A transformation occurs in the family Gnathiida; the yomg when they leave the incubatory pouch are very unlike the adult males, but hear some resemblanee to the female, though more slender. Larval forms exist also in some of the parasitie Isopods. The Cymothoida have several different larval stages; the body of the young is more symmetrical than that of the adult, the animal apparently losing its symmetry on assuming a parasitic mode of life.

The early development and larval forms of the Epicaridea, a parasitic tribe, have been most earnestly investigated hy Giard and Bonnier. These athors write that the mode of segmentation in the forms they have studied belonging to this tribe is holoblastic, the segmentation of the egg being complete and mequal, and resulting in the formation of an epibolic gastrula." The first free larra. which they call

[^7]the larva of the first stage, is a free-swimming form, resembling the namplius stage of other (rustacea. Death oceurred with all the larve of the first stage at the critical monent when the transformation into the Cryptoniscian larra, or larva of the second stage was expected to take place. (riard and Bomnier infer from this that it is highly probable that under this form (the Cryptoniscian larva) the parasite penctrates into the branchial cavity of its host, where it becomes transformed into the adult.

Sars has pointed ont that there is an intermediate larral stage between these two stages, and that this stage is the Microniscus stage. He has shown that a true Microniscus develops from the first stage of a normal Bopyrid larva, and that another form of Microniscus after having attamed its normal development is transformed into the wellknown second larval stage or Cryptoniscian stage; that these two forms of Microniscus, thongh similar in appearance, belong to two different families of Epicaridea. Therefore he maintains that Meromiseus, which has been thought heretofore to represent a distinct genus, the type of the family Microniscidx, must in the future be regarded as a transitory stage of development common to all Epicaridea. He is inclined to think that this stage is always parasitic on Copepoda.

The Cryptoniscian larva develop into adult males and females, the females passing through a tramsitory stage of hermaphroditism. The larve of the first stage and of the Cryptoniscian stage have but six pairs of legs. except in the Epicaridea, where the Cryptoniscian hare have seven pairs. The adult male in the Entoniscidre has but six pairs of legr, due to retrogressive derelopment.

5. SIZE.

The largest known Isopod is Bathynomus giganteus A. Milne Edwards from the Gulf of Mexico. This form is 11 inches in length and helongs to the family Bathynomide. Other very large Isopods are Chipidoted salini (Krøyer) and Chiridotet entomon (Linnæus).

Perhaps the smallest Isopods are found among the Tanaida, the Apsendidx, the Janirida, and the Gnathiidx. Some of these forms are only 2 mm . in length.

Between these two extremes, 2 mm . and 11 inches, Isopods of various intermediate sizes are known.

6. HABITAT.

According to their habitat the Isopods are classified as marine, freshwater, and terrestrial.

The Oniscoidea are mostly land forms, having air sacs developed in their pleoporla, fitted for the respiration of air. As members of this tribe IIaplophlithelmes: putens Hay, from an old well at Bloomington, Indiana, Trichomiscus cavernicola Budde-Lund, from grottos in the

Pyrenees，and Trichonisenss sty！⿰亻⿱丶⿻工二又⿴囗十心．Nemee，from a Gabroviza grotto near Trieste，are exceptions．

The family Asellida inchodes only fresh－water forms．Janivella Bonnier，a recently described genus，containing a single species from the Gulf of Gascony，is the only marine member of this family．The tribe Phreatoicoidea，represented only in Anstralia and Tasmania，has until recently had assigned to it only fresh－water forms，I＇lreatriens： typicus Chilton being oltained from a pump at Eryeton，New Zealand， I＇heatoicus ussimilis Chilton from wells at Winchester，South Cimter－ bury，New Zealand，P．austrelis Chilton coming from Mome Kosci－ usko，in Australia，at a place known as Pipers Creek，Phentricus shephurdi sayce，and I＇lreatwicoides gracilis Sayce，all being found in fresh water．Two terrestrial forms have recently been described， belonging to two different genera of this family having affinities to the previously known genera．Ihreatoicopsis terricola Spencer and Hall，and Hypsimetopus intrusor Sayce，the last－named species being found in the burows of the land crayfish Engæиs cmiculurus，the former species learing casts in the burrows and chambers in which it lives．

Other fresh－water species are：Meterias＂pusillu（Sayce）and Jiera guernei Dollfus，the only two fresh－water forms of the family Janiridx； Cirolanides texensis Benedict from an artesian well at San Marcos， Texas；Cruregens fontanus Chilton，the only known species of Anthu－ ride that is not marine，being found in an old well at Eryeton，New Zealand；Idsete lacustris Thompson from New Zealand；（＇lentris lineuris Dana from the Rio Negro River，Patagonia；Alitropus（！） typus（Von Martens）from the Kapaus River at Sintang，in Borneo； Telothat henselii（Martens）from the Rio Cadea，in Brazil；Iclithyorenos jellinghausi Herklots from a fish in the river Tjikerang，in Java； Livonect duurica Miers from a river in Daluria（region），Siberia； Olencira proghestator（Latrobe）from rivers in the eastern part of North America，especially the Potomac；Cymothou amurensis Ger－ stacker from a tributary of the Amm River，Asia；Norncila furialis Schioedte and Meinert from the Rio Plata River，near the city of Montevideo，Uruguay；Lathranu insidiosa Schicedte and Meinert from a river near sintos，Brazil，at its exit into the sea；Asotenu for－ mose Schiedte and Meinert firom the river Iea，in Pern；C＇crututhou laticurda Milne Edwards from the Continguiba River；Ichtlogosemus montumus Schiœedte and Meinert from streams in the Himalayan Mountains；Artystone trysibion Schioedte from the La Plata River，in South America；Chattiliu metu Dana from the Rio Plata，Patagonia：
 found on a fresh－water species I＇eliemon dispuer Von Martens；I＇sict－ dione［Peliegyye］Auriutilix Max Weber，and some forms belong－
ing to the genus I'robopyrnes Giard and Bomuer. The list of fresh-water Spheromide is large for a marine family, and includes the following forms belonging to the genera Sphaxroma Latreille, (Cecosphiaromu Dollfus, and Spharomides Dollfus: Spharoma dugesi Dollfus from at warm spring in New Mexico; S. thermophitum Richardson from a warm spring in New Mexico; S. destructor Richardson from St. Johns River, Palatka, Florida; S. forserrum Von Martens from a swamp; S. ruyicunda Leach from brackish waters in Europe; Sypheromides raymondi Dollfus from subterranean waters; Cæcosphizroma birei Dollfus and C. burgundum Dollfus from waters in grottos of the Jura; C. faucheri Dollfus from subterranean waters near the village of Sauve; and Monolistris crect Gerstacker.

With these exceptions all the forms belonging to the Chelifera, the Flabellifera, the Valvifera, the Asellota, and the Epicaridea are marine.

The Ligiidx, a family of terrestrial Isopoda, are littoral forms, and are found around wharf piles and under rocks and stones along the shore. Prof. A. E. Verrill says of Ligia bundiniana Milne Edwards:

At the Bermudas the Ligia occurs in great abundance on the ledges and cliffs along all the shores. It runs with surprising activity and quickly seeks refuge in the cracks aud crevices of the ledges, so that it is not easy to capture without injury.

7. FOOD.

Mollusks, Annelids, Crustacea, and fish seem to be the chief food of the marine Isopods. The species Cirolana concharum (Stimpson) is known to feed on the blue crab. From a single crab as many as 108 specimens of this form have been taken. It is recorded that the dogfish Šquelus acanthimes has been reduced to a skeleton by Comilera cylindracen (Montagu). The Isopods feed not only on the dead animal, but the living animal is also their prey.

It is supposed that the food of the fresh-water Isopods consists mainly of Infusoria.

The stomachs of certain of the land Isopods have, on examination, been found to contain moss cells, algre, etc., so that a vegetable diet is in some cases substituted for an animal diet. The Serolida are strongly suspected of camnibalism (Stebbing).

8. HABITS.

Very little is known about the habits of the Isopoda, except as they are destructive. It is a well-known fact that the Isopod, Limnoriat lignomren (Rathke) commonly called the "gribble," attacks wood by boring small holes, cansing much damage to bridges, piers, etc. It has also been seen attacking the gutta-percha of submarine telegraph cables.

There are two species of the genus spharome which have this same
destructive hahit. Sypharome rostutors. Bate comes from the Indian Penimsula, where it was procured " from a piece of wood which had formed part of a mailway bridge orer one of the backwaters of the west coast." The wood is deseribed as being "honeycombed with erlindrical holes, in many of which the animal wat rolled up like a hall." Espheromme destructor Richardson was found horing the piers on St. Johns River, at Palatk:a, Florida. Sections of the wood showed that the diameter had been reduced during a period of eight years from 16 inches to $7 \frac{1}{2}$ inches. The whole surface of the wood was bored with holes areraging in size about 5 mm . in diameter, and in an end section the holes were arranged in concentric rings between the rings of ammal growth, showing the little animals' preference for the soft pine. Very strong mandibles, projecting beyoud the labrum most conspicuously, provide a perfect equipment for this destructive work.

In decided contrast to the above-mentioned habits, Hallez has recently pointed ont some of the beneficial work of these little creatures. He has found that Eurydice pulchru Leach is the principal agent in maintaining the healthfulness of the coast at Portal, France. Shark fishing is an important industry of the people of Portal, who consume a great many of these fish and export a large number of them to laris. The heads of the fish are thrown on the heach, but they are instantly surrounded ly the little crnstacea which leave only the cartilaginous skeleton.

Hallez believes that each locality has a species especially adapted to the conditions of the place for carrying on this samitary work along the coast.

9. MODE OF LIFE.

Many of the Isopods are ectoparasites. The Cymothoidx and . Fgide are found attached to the fins and gills and in the months of fishes. Some of the Cirolander are also parasitic on fish. Dr. (roode said of Olencira proxgustutor that these forms are not parasites in the true sense of the word, drawing nourishment from the fish to which they attach themselves: they are commensal rather, stealing shelter and transportation, but not subsistence. When the fish to which they are attached die, they change their quarters and seek a new host. Ollenciru pregustutor (Latrobe) is a very abmant parasite, infesting a large per cent of the menhaden from the Potomac.

Syenthon Ioliginea Itarger was ohtained from the month of a squid. Other specimens, however, have been found parasitic on young mullet, showing that the speceies is not parasitic solely on the squid.
lamaitism is the mode of life chiefly with the Epicaridea. The family Bopyridar infest the shrimps and crabs, and are found either attached to the abdomen of the host or within the bramehial carity, beneath the carapace. A arat or shmimp thas infested is readily
deteeted by the large swelling or protuberance at one side of the body. A mew gems of Bopyride is described in the following pages, which occupies a position in the visceral chamber of a species of Munidu, this position with reference to the host never having been heretofore recorded of a parasite of this family. The Entoniscida, parasitic on the Brachyum, always oceupy the visceral cavity of the body of the host, entering through the branchial cavity.
The Dajida are found attached to Schizopoda, and usmally occupy a position on the back of the host, but they may also attach themselves on the rentral side to the branchia of the gill chamber or to the abdomen on the dorsal side. The Cryptoniscida are parasitic on Amphipods, other Lsopods, Ostracoda, Cirripedia (usually the parasitic (iiripedia known as the Rhizocephalia), and are sometimes found in the incubatory pouch of deep-water Mysidie.
One host may carry as many as four parasites. Dr. Fraisse found a Peltorgester, a Cryptomiscus, an Athelyw, and a Psendione on one Pagurid. One branchial and one abdominal parasite, or two branchial parasites, one on either side of the body, is not uncommon.

Other abiding places for shelter and protection are found by other Isopods. The Anthurid Eixothistus nermifurmis Haswell occupies the tube of a Vormilice, and in the elongated shape of the body and the smallness of the limbs resembles the original oceupant. The posterior part of the hody. with its expanded appendages, serves well to imitate the branchix of the head region of the Serpmla, which issues from the free end of the tube, the Anthurid entering the tube in the reverse direction from its former occupant, with head foremost.

Eye spongionlita Semper lives in a silicions sponge. Species belonging to the genus Titenetliex Schioedte are found in caverns; species of Mutyertlomes Brandt are myrmicophile forms, dwelling in ants' nestr, and Leptespidicu Zreripes Bate and Westwood was first found in the fibrous nest of a mollusk.

The species belonging to the genus Clocuntis Dana are supposed to be tube dwellers.

Iclithyoremus jellinglausi; Herklots bores a hole in the hody of the fish, Puntius muculutus. Bleeker, just behind the fins, where it lives with its mate (Stehhing).

Many Isopods are confined to caves, and lead a subterranean life. Cucidoten stygins Packard was first fomed in Mammoth Cave; it has been recorded from W yandotte (ave also (it is not confined to caves); Cacidotea richerdsome Hay comes from Nickajack Cave, as well as Cecidnten nickujuchensis Packard; Brackenridyia cuvermem, Ulrich comes from Ezell's cave and Beaver Cave near San Marcos, Texas; species of the gemus Cucospheroma Dollfus seem to be confined to grottos, being found in subterranean waters; Spharomides reymondi Dollfus comes from subterranean wateis in a Cerennes grotto; Tricho-
misens cararmicola Budde-Lund from grottos in the Pyrenees; Asellus raveriens Schiodte fromsubterranean waters in Central Europe; Trichonisers stygins Nemee from a (iabroviza grotto near' 'rieste (probably identical with T!yplomiseus stygius Joseph, according to Nemec, who, however, considers the species a true Tridromismes), and Stemusellus pirei Dolfus from subterranean waters (wells) near Cevemes, at a depth of 150 meters.

10. BATHYMETRICAL DISTRIBLTION.

Many of the marine forms are found floating on algæ or swimming freely near the surface of the water. Below the surface they have been taken from depths ranging from 1 to $2,0 t 0$ fathoms. Among the deep-sea forms, the speeies Apseules grecilis Norman and Stebbing may be mentioned; it comes from a depth of 1,450 to 1,785 fathoms, and is confined to the deep waters of the North Atlantic. The families which are known to descend below 1,000 fathoms in the North Atlantic are-a

In the Southern Sea the Serolida have been found distributed over a wide area in very deep water:, descending to $2,0 \not 0$ fathoms.

Eyu muximu Hansen, from Cocos Island, comes from a depth of 1,175 fathoms; Astucilla crecu Benedict, from off Maryland, wats taken at a depth of 1,825 fathoms. and Peendione tuberculutu Richardson, from Port Ortway, Patagonia, comes from a depth of 1.0 .0 fathoms.

One of the characteristic features of the deep-sea forms, or "Bassalian ammals," is their distribution orer wide areas.

11. GEOGRAPIICAL DISTRIBUTION.

The influence of temperature has been considered of parmount importance in the distribution of life in the seats.

According to Prof. James D. Dana, the preponderance of species is in the Temperate Zone, or Pararetalian and Notalian Realms. ${ }^{b}$ Species ontside of the Tropical Zone or Tropicalian Realm ${ }^{b}$ are of the highest ramk and mamally the largest of the order, the giant forms, sueld as

[^8](hiridotel sabinu (Kroyer), (hiridotert entomom (Linnæus), and (ibyptonntus centertirns Eights "being found in the Frigid Zone or Arctalian Realm. ${ }^{b}$

The Spheromidx are nearly all cold-water species, thongh not reaching into the Arctalian Realm. Spheromme thermophilum Richardson, from a warm spring in New Mexico, and S. dugesi Dollfus, also from a wam spring in New Mexico, are exceptions.

The Idoteidae are the most decidedly cold-water forms, the Cymothoidax and the Corallanida the least so.

The following genera extend into the Arctalian Realm: IIotea, Glyptomotus, .Jiere, Sanira, Munna, Ega, Serolis, Gnathia, Arctumes, Tunuis, Limiopsis, Phryxus, Dajus, Chimidoten, C'ryptocope, Leptognathia, Sphyrapms, Symidotea. Astucilla, Munmopsis, Eurycope, Culathura, and Bopyrordes.

In the Pararetalian and Notalian realms there is a commingling of forms from the Arctalian, Antarctalian, and Tropicalian realms.

Some of the terrestrial Isopods are very widely distributed, such well-known species as Armudillidium vulgare (Latreille), Porcelliolxwis (Latreille). Pometlio scuber (Latreille), Oniscus asellus Latreille, and Metoponorthus pruinomz (Brandt) being cosmopolitan and found all over the world.

Many of the marine forms from the coast of Norway, England, and the Atlantic coast of Europe, and from the Mediterranean are carried by the Gulf Stream along the Atlantic coast of North America and are found on the coast as far south as the West Indies and the Bermudas. Among the mumber on record from European waters found on the Atlantic coast of North America may be mentioned: Idoter metallica Bose, Rocimeta mruculatel Schiœedte and Meinert, Ega ventrosa M. Sars. Efy urctire Lïtken, Sphymelpus malleolus Norman and Stebbing, EAgumebbï ((inérin), Synidoteabicnespidu (Owen), Calathura lorancliata (Stimpson), (yuthura curimatu (Krøyer'), Egu pisoru (Linnaus), Cirolana comclatmom (Stimpson), Idotea marina (Limnaus), .Feme marina (Fabricius), Areturus baffizi (Sabine), Cimolana bopealis Lilljeborg, Gmathia elongreta (Kroyer), Astacilla gramelata (Sars), Ega cremulata Lïtken, Cryptocopre arctica Hansen, Leptoguatloire longiremis (Lilljeborg). (omilem rylindricea (Montagu), Leptocleliet serignyi (Kroyer), Encyrope commet, (Sars), Dummpesis typica M. Sars, Jonira maculosel Leach, Mrmun fubric:i Kroyer, Mmm, keteyeri Goodsir, Limmorin lignommen (Rathke), Tenais carolimii Milne Edwards, Leptocheliu dubia (Kroyer), .Jerm ullifions Leach, Eyfe imcisel Schiodte and Meinert,

[^9]Syscenus infetix Harger, Rocineln demmerli (Laceas), and Dijus mysidis Kroyer.

Chiridoted setbini (Kroyer) is a circumpolar species, having been recorded from the Pacific coast of North America, Greenland, the Siberian Polar Sea, the Kara Soa, and Frank--Josef Land (Surs). Symideten modulosu (Kroyer) is also circumpolar and occurs along the west and east coasts of North America.
some of the Bopyridar have a wide distribution. Ihryrus clldominalis (Kroyer) has been recorded from the const of Norway, from Greenland, and from the Atlantic and Pacitic coasts of North America, the varions species of host which it infests being circmupolar. Bomyroides hippelytes (Kroyer) is found also on hoth coasts of North America, the form from the west coast having been deseribed by Stimpson under the name acutimarginatu.

It is interesting to note the similarity between several of the species found on the Atlantic coast of North America and those of the Pacific coast, the differences separating them being very slight. Hansen has pointed out the close resemblance of his two species . Ey, murcimu, from Cocos Island, and. Eyu ucuminuta, from the Galapagos Islands, to Syfu permen (Linmens) from the Atlantic coast; of his species Efy phelecie from Cocos Istand and the Galapagos Islands, to - Eye eentrose Sars from the coast of Greenland; of his species Rocirelu mudestre, from the Cinlf of Panama to Rocinclu maculutu Schicedte and Meinert, from Greenland, and of his species Rocinelu luticuudu from the coast of Mexico to Racimeln anstrel is Schicedte and Meinert from the Straits of Magellan. Rocinelu afinim Richardson from . Tapan also presents striking resemblances to Rocinelu oculute Harger from the Atlantic coast of North America. Ciliciza ceututue gillianu Richardson and Dymamene tulberculosa Richardson from the Pacific coast are quite similar to forms from the Atlantic coast, Cilicere couduta (Say) and Dynamene bermudensis (lves) from the Gulf of Mexico, Yucatan, and the Bermudas.

A rather remarkable instance of a shallow-water organism coming from two very remote localities is that of Lejptochedio mimutu Dana. The type species of this form was obtained from the Fijis, at the island of Ovalan, from among seaweed and small corals. A fer years ago this species was again recorded by Stebbing, hut this time from the West Indies, at Long Island, where it was found in shallow water corered with algae.

In the present paper record is made of a species . Eyd disherysience (Milue Eilwards) known to West Indian waters, being obtained by the U. S. Fish Commission steamer Albutresse at the Hawaiian Islands.

In explanation of these facts Dr. Gill hats salid:
The inference is irresistible that such types have migrated irom common ground, and may have originally developed either in the deep sea and thence dispersed in opposite directions, or at one of the extremes, and wandered thence over the bottom to their final resting plates.

12. SECONDARI SEXUAL CHARACTERS.

In many cases the males and females are alike in general characters, although there may be slight differences in size and proportions. In some instances, however, differences oceur of the following nature: the antemar in the mates may be longer than in the females; this is true of the Ligiida for example. The males of Ligia Danctinienu Edwards also have a fringe of bristles or stiff hairs along the carpus and the merus of the first pair of legs. which character is entirely wanting in the females. Ligict eatotica Roux is provided with a process extending from the propodus of the first pair of legs in the males, this process being absent in the females. The males of Corallana tricornis Hansen, Corallenu quentricorn is Hansme, and Corelluma sexicornis Richardson have in the first species named three spines on the dorsal surface of the head, in the second species four spines on the head, and in the third species four spines on the head and two on the basal joints of the antenmula, the head of the female in all these species being entirely unarmed.

Among the Tanaide and the Apseudida the first pair of legs of the males are much more robust and very much larger than those of the females, although they are usually similar in structure. The males of several species of the genus Leptuchelia Dama have greatly elongated first gnathopods and antenne while the sume appendages in the females are greatly reduced.

The genera of the Janirida, in which the first pair of legs of the males is different in structure from the other pairs, show a similarity in structure in all seven pairs with the females. Curpins bermudensis Richardson, which presents this tendency in the extreme, being remarkable for the great size and peeuliar structure of the first pair of legs, exhibits no peculiarities of this kind in the female. The legs of the first pair in the species, Stenetrium stebleingi Richardson, difter in form from those of the female, hoth, however, being chelate in character.

In the Sphreromide the genus Cilicau Leach has the first abdominal segment in the male produced in a long spine or process, which, according to Haswell, is sometimes wanting in the female. The males of the genus: Isoctuctus Miers have the seventh thoracic segment produced in a long spine, which is not developed in the female. Cycloidure Stebbing, an Australian genus of the Spharomidæ, has the seventh segment of the thorax produced into a large dorsal spine, at least in the male. Corutocephelus Woodward, also a Spharomid genus, has the head of the male drawn ont into three large processes, of which the middle one is much the longest; in the female faintly marked projections take the place of these processes. The sixth segment of the thorax in C'empecopea Leach is produced in a long tooth in the male, but not in the female.

In this order, with the exception of the lipicaridea, perhaps there is no greater distinction between the males and the females than in the family Gnathiide:. Owing to these diflerences, at one time the young and the females were included in a separate family from that to which the males were assigned. The relationship between the two forms was definitely established by Mr. Eugene Hesse, although suggestions were made by Leach as early as 1814 pointing to this conclusion. The adult males have powerful mandibles projecting in front of the large guadrangularly shaped head. In the female the mandibles are absent and the head is small and triangular. The first gnathopods in the male are two-jointed operenlar appendages. In the female the first pair of leg's lie in a membranous plate supposed to be marsupial in character (Stebbing).

With the Epicaridea not only is sexual dimorphism most marked, but the mates also differ from the females in the shape of the body, which is elongate and always bilaterally symmetrical, while the body of the female is usually more or less asymmetrical, and has a tendency to be circular in outline, and in the fact that the segments of the abdomen may be distinct or fused irrespective of this condition in the female.

13. ALTERATION OF SEX AND HERMAPHRODITISM.

The peculiar phenomenon of the alteration of sex occurs among some of the Cymothoidie. The young male at one period is protandrous, being provided with rudimentary female reproductive organs within the male reproductive organs. When the integrment is shed the female reproductive organs develop at the expense of the male organs, the incubatory lamellae arise at the base of the thoracic legs, and the copulatory organs are thrown off.

This alteration of sex and temporary hermaphroditism of the protandrons type has been observed in C'ymuthou, Terocila, Anilucra, and Icthyorenos.

The Cryptoniscian larve (males) of the Epicaridea develop into adult mates and females, the larve which are to become females haring at one period both male and female reproductive organs. In the family Cryptoniscida the males not transformed into females do not pass beyond the form of the Cryptoniscian larve. With the family Entoniscidie certain males undergo, while retaining their sex, a metamorphosis less complete tham that of the female, but sufficiently great to give a very different appearance to this second form. Thas the Entoniseida have larval males (complementary mates) as well as degraded adult males, both fertile. It may be possible as Girard and Bomier suggest, that, if the aldult degraded male should disappear, one of these complementary males may take its place and contime its tramsormation into the adult form. The Cryptoniscidar have only larval males. The Bopyridia have only degraded adult males.

ISOPODA COLLECTED IN JAPAN IN THE YEAR 1900 BY

 TIIE U. S. FLSII COMMILSION STEAMER ALBATROSS, AND IN THE YEAR 1881 BY THE U. S. S. PALOS.The collections made in Japan by the U ${ }^{\top}$. S. Fish Commission steamer Albutross and the U. S. S. Pellos contained material that was interesting and, for the most part, new to science. In the present paper two new genera and several new species are added to the list of those already known.

LIST OF REFERENCES.

Dana, Janes D. Crustacea U. S. Exploring Experlition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U. S. N. Philadelphia, 1859. XIII, P't. 1, 1. 80t; Atlas, pl. Lin1, fig. 7.

Hansen, H. J. Cirolanidee et familie nonnulle propinqure Musei Hauniensis. Vidensk. Selsk. Skr., 6te Rakke, naturvidenskabelig og mathematisk Afd. Kjobenhavn, 5te Bd. 3, 1890, p1. 326-327, pl. 1, figs. 2-29.
-_ Report on the Dredging Operations of the West Coast of Central America to the Calaparos, to the West Const of Mexico, and in the Gulf of California, in tharge of Alexander Agassiz, carried on by the U. S. Fish Commission steamer Albutross during 1891, Lieut. Commander Z. L. Tamer, U. S. N., commanding. Cambridge, 1897. XXII, The Isopoda. Bull. Mus. Comp. Zool., Harvard College, NXXI, No. 5, 1. 10s, pl. in, figs. 2, 3.
Haker, Ocar. Reports on the Results of Dredging, under the Supervision of Alexander Agassiz, on the East Coast of the United States, during the Summer of 1880 , hy the U. S. Coast Survey steamer Blake, Commander J. R. Bartlett, U.S. N., commanding. Cambridge, 1883. NXIII. Report on the Isopoda. Bull. Mus. Comp. Zool., Harvard College, XI, No. 4, pp. 97, 98, pl. u1, figs. 2-2a; pl. iv, fig. 1.
Haswell, Wiliam A. On Some New Australian Marine Isopoda. Pt. 1. Proc. Linn. Soc. N. S. Wales, V, 1880, pp. 470-481, pls. xui-xix.
Miers, E. J. Catalogne of the Stalk and Sessile-eyed Crustacea of New Zealand. London, $1876, \mathrm{p} .109$, pl. 111, fig. 3.
-_ Crustacea. Zoological Collections of II. M. S. Alert. London, 1884, pp. 302304 , pl. xxxili, fig. A, and pl. xxxill, fig. b.
Richaminos, Harkiet. Description of Four New Species of Romelf, with a Synopsis of the Genus. Proe. Amer. Philos. Soc., Philadelphia, 1898, XXXVII, pp. 14-15, figs. 5, 6.
-_ Key to the Isopods of the Pacific Coast of North America, with Descriptions of Twenty-two New Species. Proc. U. S. Nat. Museum, Washington, 1899, NXI, 1p. 828 and 868.
Scmeente, J. C., ant Melnert, Fr. Symbole ad monographiam Cymothoarum, Crustaceorum Isopolum Familix. (Continuato) Additamenta. Index systematicus. Index alphabeticus. Naturhistorisk Tidsskrift, Kjøbenham, 1884, (3) XIV, 1883-84, pp. 360-362, pl. xv, figs. 1-2.

Stebblec, T. R. R. Arctic Crustacea: Bruce Collection. London. Ann. Mag. Nat. Hist., (7) V', p. 14, 1900.
Stimpsos, Wilifis. Crustacea and Echinotermata of the Pacifie Shores of North America. Journ. Bost. Soc. Nat. Hist., Cambridge, 1857, V'1, 1857, p. 71.

FLABELLIFERA or CYMOTHOIDEA.

Family FGID D .
ROCINELA ANGUSTATA, new species.
Rocinelu laticeudu Richardson (not Hansen), Proc. Am. Philos. Soc., XXXVII, 1898, No. 157, pI. 14-15, tigs. 5-6; Proc. U. S. Nat. Museum, NXI, 1899, p. 828 .

Loculity.-Manazura, Japan. (Collected by the U. S. Fish Commission steamer Albatros.s.)

This species formerly identified by the anthor with R. laticamla Hansen " from Acapulco, Mexico, is now given a new specific name. It can be differentiated from R. Inticundu Hansen loy the difference in the width of the abdomen compared with the thorax, the abdomen being much broader in R. leticundet Hansen than in R. anynsistata Richardson: in having but four spines on the propodus of the prehensile legs. while in R. laticanda Hansen there are six: in having six spines (five are mrongly given in the earlier description) on the merns of the prehensile legs, while in R. luticouda Hansen there are fomr, and in the shorter antemm. Four specimens of this species were obtained by the U. S. Fish Commission steamer IThutrosix, one from off San Luis Obispo Bay, California, another off Esteros Bay, California, a third at Puget sound, and a fourth from Unimak Island, Alaska. All four specimens are alike in character; two are males, and two females. The specimen from tapan, a male, agrees with the specimens referred to R. amgnstutu Richardson with this exception: There are four spines instead of six on the merus of the prehensile legs. It has the narrow abdomen, the shorter antema, and the fom spines on the propodus of the prehensile legs. as stated in the description of Ri. (laticauda) angustata Richardson.

ROCINELA AFFINIS, new species.

Body orate: color uniformly yellow.
Head large, triangular, and produced over the basal joints of the antemax in a truncate process. Eyes large, occupying the greater portion of the head and contiguons along the medisn line. The ocular lobes do not project posteriorly. The ocelli are arranged in ten rows along the long axis of the eye. The first pair of antemar extend to the end of the peduncle of the second pair of antemme: the first joint of the peduncle is very short and is almost concealed ly the frontal process: the flagellum consists of tive joints. The second pair of antemse extend but a short distance beyond the first thoracie segment;

[^10]Proc. N. M. rol. Norii-11: - 3
the first joint of the peduncle is entirely concealed by the frontal process; the flagellum consists of fourteen joints.

The first and second segments of the thorax are equal in length. The third is longer and the fourth the longest. The fifth segment is short and equal in length to the first or second segment. The sixth segment is very short in the median dorsal

Fig. 1.-Roginela Affinis, New SPECIES. $\times 4$. line, being about one-third the length of the preceding segment. The seventh segment is extremely short, being half as long in the median line as the sixth segment. The epimera of the second and third segments are not so acutely produced as in the following segments. Those of the fourth, fifth, and sixth segments are narrow and have acute posterior extremities. The epimera of the seventh segment are hroad, hat also acutely produced.

The first abdominal segment is not evident in a doral view, being entirely concealed hy the last thoracic segment. The second, third, and fourth segments are produced laterally in acute processes. The fifth segment is narrow. not as wide as the terminal segment, but is longer than the preceding segments in the median line. The terminal segment is romudly triangulate, with margins friuged with a few hairs. The outer branch of the uropoda is broadly expanded, rounded posteriorly, and is ahout twice ats wide as the inner branch. The onter margin is crenulate, and beset with ten spines. The inner branch is narrow, and rounded posteriorly, and is equal in length to the outer branch.

The first three pairs of legs have long curved dactyli. The propodus of the first pair is armed with four spines, the carpus with one, and the merus with two. The second and third pairs have the propodus armed with only three spines. The other legs are long. slender, and somewhat spinulose.

Only one specimen was taken by the U. S. Fish Commission steamer Albutross, at the entrance of Port Meda. Japan, at a depth of 167 fathoms.

Fig. 2.-LEG OF First pair of Rocinela affinis. $\times 10$.

Type.-Cat. No. 29083, U.S.N.N.
This species is very closely related to R. oculata Harger, " to which it hears a very striking resemblance. It differs from that species in the following points:

[^11]（1）In the entire concealment of the first abdominal segment on the dorsal side by the lant thoracic segment：（ 2 ）in the much larger epimerat of the seventh thoracic segment，which are quite as prominent as those of the sixth segment，and are somewhat broader，the posterior extremi－ ties not being on a level with those of the sixth segment，as is trime of R ．ocelutu．hat extending some little distance behind；（3）in having the propodus of the legs of the tirst pair armed with only fonr stout spines，while in R ．ormluta there are eight，and in having two stout spines，also，on the merns，while in R ．oculutu there are none；the legs of the second and third pairs have three spines on the propodus．while in R ．oculutu they have six spines：and（ t ）in not having the eyes pro－ duced posteriorly into lobes as in R ．ocenluta．

Family（CIROLANID．E．

CIROLANA JAPONENSIS，new species．

Body abont three times as long as wide，rather convex．
Head transerse．Eyes yery small．round and situated at the antero－lateral corners of the head．Color of eyes light hrown． Frontal margin of head with small median point，on either side of which is a depression for the reception of the antemme．First pair of antenne very short，reach－ ing only to the end of the fourth joint of the pe－ duncle of the second pair of antenne；flagellum with joints very short and difficult to distinguish； they number about ten．Second pair of antenme extend a little heyond the posterior margin of the

Fig．3．－ANTENNE，fron－ TAL LAMINA，CLYPEIS， AND LABRUM OF CIRO－ LANA JAPONENSIS，NEW SPECIES．$\times 10$ ． third thoracic segment：the flagellum contains about twentr－four joints．Frontal lamina or interantemal plate is narrow and elongate，this and the elypeus being unarmed and perfectly flat．

The first segment of the thorax is not greatly longer than the second，although it is a little longer．The fourth，fifth，and sixth segments are equal in length to cach other and to the first，being slightly longer than the second，third，and serenth．The epimera of the second and third serments are not produced posteriorly．Those of the following four segments are produced posteriorly a gradual increase in this feature being noticeable．The posterior extremity of the epimera of the serenth segment reaches the posterior margin of the second abdominal segment．All the epimerat are broad and smooth，with only a faint trace of arehed carinae．

The first four segments of the abdomen are of equal width and of nearly equal length．The third and fourth have the post－lateral extremities produced．The fifth segment is covered at the sides by the post－lateral prolongations of the fourth segment．The sixth seg－
ment is triangulate, with apex obtuse, the sides conserging more rapidly to the posterior third portion of the segment. This posterior part of the last segment is crenulate, and armed with ahout ten spines and numerons hairs. The inner branch of the uropodat is about twice as broad as the onter. Both branches are equal in

Fig. 1.-Abiomen of Cirolana JaponENSIS. $\times 10$. length. crenulate on both margins, and armed with spines and hairs.

The legs of the first pair have the ischimm and merus distally produced, the process of the merus extending half the length of the propodus. The carpus is very small, almost inconspicnons. There are a few spines on the inferior margin of the merus, carpus, and propodus. In the second and third pairs of legs the carpus is larger, and the process of the merus extends to the end of this joint. The fourth and tifth pairs of legs are similar, with the exception that the basis in the fifth pair is more dilated and less slender than in the fourth pair. The sixth and seventh pairs have the basis much dilated, forming a high carina. All the legs are furnished with long, phumose hairs. Spines also are present along the margins of the legs.

Color, uniformly light yellow; eyes, light hrown.

Only one specimen was taken by the U. S. Fish Commission steamer Illortross, at Yokkaichi Light, Japan.

Typer- Cat. No. 29085, U.S.N.M.
This species is closely related to C. lirtipes Milne Edwards, ${ }^{a}$ but the following characters may serve to distinguish it from that species: Clypens somewhat wider than labrum, heing produced at the lateral angles; antenne longer than in C. lirtipes, reaching the posterior margin of the third thoracic segment; eyes smaller that in C. hirtipesand round; epimera of thoracie segments not ormamented with arenate

Fig. 5.-Legs of Cirolana Japonensis. a, OF FIRST PAIR; b, OF SECOND PAIR; r, OF FIFTH PAIR; l, OF SEVENTH PAIR. $\times 10$. carina ("furea"), only faint traces of these being evident; the legs of the first three pairs are not provided with a spine at the apex of the ischium and merus, as is true of C. hirtipes; the other four pairs of legs are prorided with spines along the margins and a few spines on

[^12]some of the joints, while in (\because. lirtipes the spines are more mumerons on the mageins and gronped together in rows on the ischimm, merus, and carpus: and the posterior margin of the terminal segment of the abdomen is armed with ten rather than sixteen wines.

This species differs from (. srliödter Miers" in the form of the frontal lamina (interantemal plate), which in the latter speeies bears a strong tooth at its anterior extremity.

It differs from (: temistylix Miers in not having the first thoracic segment greatly longer than the other segments.

From (3 . rexsii Miers" it differs in the form of the eyes, which in that species are narrow-oblong, and extend "along the sides of the head from the front margin of the first segment of the body nearly to the bases of the antemme."

Fimily CYMOTHOIDE.

LIVONECA PROPINQUA, new species.

Body broad, with sides subparallel, twisted either to right or left. Abdomen not narrower than thoras. Color, dark yellow.

Head small, triangular; front produced in an obtuse point: posterior margin straight. Eyes moderately large, oral, and sitmated at the lateral angles of the head. First pair of antemas extend mearly to the antero-lateral angles of

Fig. 6. - Livoneca propinqua, NEW SPECIES. $\times 3$. the first thoracic segment; each consists of reven joints. Second pair of anteme reach the posterior margin of the head; each is composed of thirteen joints.

First thoracic segment considerably longer than any of the others. The anterolateral angles of this segment extend up aromed the head on either side; the poste-

Fig. 7.-LIVONECA PROPINQCA. u, LEG OF FIFTH PAIR; b, LEG OF SIXTH PAIR; c, LEG OF SEVENTII PAIR. $\times 10$. rior angles are widely romuded. The other thoracie segments are about equal in length, the seventh segment heing somewhat shorter.

[^13]The epimera of the second and third segments are long and narow, and extend the whole length of the lateral margin of the segments. The epimera of the fourth and fifth segments are short and pointed posteriorly, and extend only half the length of their respective seg ments. The epimera of the sixth segment are pointed posteriorly and extend three-fourths the length of the segment: those of the seventh segment are rounded posteriorly and extend fully to the posterior margin of the serenth segment.

The abdominal segments are short but fully as wide as the thoracic segments. The terminal segment is tramserse, about twice as wide as long, with the posterior margin widely romeded.

The moporla are narrow oar-like appendages, somewhat tapering toward the extremity, which is rounded. The outer branch is a little longer than the imner hrameh and extends almost to the posterior margin of the terminal ahdominal segment.

The legs are all similar, with the exception that the carina of the basis is rery high on the four posterior pairs.

This speries differs from L. caudata Schicedte and Meinert ${ }^{a}$ from Japan in the fact that the carina of the basis is much higher than in that species; in the longer mropoda, the outer branch being the longer one in L. propimpur, while the reverse is true in L. canduta schiodte and Meinert; and in the transverse terminal segment.

Threespecimens were olltained by the U.S. Fish Commission steamer Allatross at Port Heda, Japan.

Type.-Cat. No. 29086 , U.S.N.NI.

Family SPH.EROMIDA.

CYMODOCEA ACUTA, new species.

Surface of body smooth: color white with numerons black dots.
Head large, hroader than long, with prominent median point. Eyes large, situated in the post-lateral angulations. the

Fig. s.-rymoder('E.A ACTTA, NEW sperien. $\times 3$. ocular lobes extending some distance beyond the posterior margin of the head. First pair of antemme extend almost to the posterior margin of the first thoracie segment; first two joints of peduncle large, dilated, the first one long, the serond rery short; third joint long and slender: flagellum composed of about seventeen joints. Second pair of antenma reach the posterior margin of the second thoracie segment; flagellum composed of about twenty joints.

First segment of thorax is twice as long as any of the others. The following six segments are subequal in length. The lateral parts of all the regments are produced in narrow, acute angulations. The epimera are indicated by fant suture marks.

[^14]The first segment of the abdomen is twice as long the the last thoracie segment. There are three suture lines on either side, the first pair being entirely concealed except in a lateral view. This segment is posteriorly produced in two small points, one on cither side of the median line, and in two larger points, one on either side a little within the line of the epimeral sutures of the thoracic segments. The terminal abdominal segment has a large triangular lobe within the noteh at

Fig.10.-LATERAL VIEW OF BODY OF CyModocea ACUTA. $\times 5$.

Fig. 9.-Cymodocea acuta. u, Antenne of the first Palr; b, Labrem. tramstersely situated. The uropoda are equal in length, and are shorter than the terminal segment. Both are pointed posteriorly. The outer one is more tapering than the imer one. which is equal in width throughout its length.
The legs are all similar in shape and size and terminate in biunguiculate dactyli. They are ambulatory in character.
Only one specimen was collected by the U. S. Fish Comon the surface.

Typer-Cat. No. 2908t. U.S.N.M.
This species differ: from C. mammifern Haswell," from Port Denison, Queensland, in having the uropoda shorter than the terminal segment, while in that species they are longer than the terminal segment; and in haring the lateral angles of the thoracic segment drawn out in acute processes, while in (\because. mummifern they are " rather blunt."

VALVIFERA or IDOTEOIDEA.

Family IDOTEIDE.

SYMMIUS, nevv genus.

Head with lateral parts expanded; lateral margins entire, not cleft.
Eyes small and situated on the posterior part of the expanded lateral portions.

First pair of antenna elongate, consisting of four joints, the last joint being clavate. Second pair of antemar very whort, not longer than the first pair, and consisting of six joints, five being peduncular. the sixth joint being the flagellar joint. Maxillipeds with a threejointed palp.

Epimera present and developed on only the last three segments of the thomas, as in Cilyptomotns Eights, the epimera of the three ante-

[^15]rior segments leing perfeetly united with the segments and with no trate of suture lines.
The abdomen is composed of three segments, two short basal segments and one fong, narrow terminal segment.

The opercular valuesconsist of a single piece each,

Fig. 11.-Symmius caudaTUS, NEW SPECIES. 7. the basal and terminal plates not being distinct or separated by even a suture line.
This gemis differs from hoth Clyptomotus Eights and Chiridaten Harger in having the lateral margins of the head entire and not cleft; in having the eyes situated on these lateral expansions of the head; in having all the joints of the flagellum of the second pair of antenna consolidated and forming a single piece; in having the abdomen composed of only three segments; in having the valves of the operculum consisting of a single piece, and in having a three-jointed palp to the maxillipeds.

It difters also from Chiridoted Harger but agrees with Glyptometus Eights in having the epimera distinct only on the last three segments of the thorax.

SYMMIUS CAUDATUS, new species.
Body elongate, broadest at second and third thoracic segment.

Head broader than long, with the anterior part expanded laterally. The margins of these lateral expansions are entire. The eyes are very small and situated in the posterior angles of the lateral lobes. There is no notch in the middle of the anterior margin, the margin being very slightly produced in a widely rounded lobe.

The first pair of antemm consist of four joints and are somewhat elongate. The last joint is long and clavate. The second pair of antenner consist of six joints and do not exceed in length the antemax of the first pair. The joints of the flagellom are all consolidated into a single piece, the terminal or flagellar joint.

The first four segments of the thorax are about equal in length. The tifth, sixth, and seventh segments hecome successively shorter. The body is broadest at the second and thoracic third segments, the sides converging beyond that point to the nurrow apex of the terminal abdominal segment. The epimera of
the four anterior thoracid segments are consolidated and perfectly united with the segments. Those of the fifth, sixth, and seventh segments are distinct and evident in a dorsal view.

The abdomen is composed of three distinct segmentstwo short segments preeeding the long and namow terminal segment. The lateral parts of the first two abdominal segments, as well as of the seventh thoracein segments, are produced into acute points. The terminal segment is entire, with no suture lines at the hase. It
 CAFDATUS; a, ANTEHIOR SIDE; b, POSTERHOR SIDE. $\therefore 10$,

Fig. 14.-1)perctiar VAJVL OF GYMMILS CAUDATU'S. >10. is produced in a long and narrow extremity, rounded at the apex. About the middle of the segment there is a slight lateral expansion on either side. The operentar

Fig. 15.-Legs of symmids catdates; a, flrat pair: b, SECOND PAIR; c, SEVENTH PAIR, $\times 15$. valyes consist each of a single picee and are produced in a longo and narrow extremity.

The legs of the first pair are stonter and more rohust than the others. Those of the last pair are very feeble and much smaller than the preceding pairs.

Color white, with marking's of grayish brown.

Nine specimens were collected by the U. S. Fish Commission steamer Albutross at Ose Zaki. Japan, at a depth of 60 to 70 fathoms.

Type.-Cat. No. 29081, L.S.N.M.

Family ARCTURIDA.

ARCTURUS HIRSUTUS, new species.

Body densely covered and beset with spines, each of which at its distal end has a circle of fine hairs radiating from it in all directions in a plate at right angles to the axis of the spine, giving a rery characteristic and musually beantifnl appearance to the body.

The head has a median excavation on the frontal margin. Between the eyes on the anterior portion are two long spines the longest of any on the body except the two at the posterior extremity of the terminal segment of the ablomen. On the posterior portion of the head in the space between the eres are four spines of apal length, two on either side of the median line. On the antere-lateral portion
of the head is a single small spine; on the post-lateral portion are two eroups of small spines, having two or three spines in each group. The lasal joints of the first pair of antenne bear each a single long spine; the flagellam extends a short distance beyond the middle of the third joint of the peduncte of the second pair of antennæ. The second joint of the peduncle of the second pair of antemne bears three long spines; the third joint bears four long spines in a longitudinal row about the middle of the segment, and a long spine at the distal extremity; the fourth joint bears a long spine at the distal extremity; the fifth joint is unarmed; the flagelhum contains fifteen joints. The joints of the antenme are thickly fringed with long hairs.

The first segment of the thorax has on the anterior portion two long spines on either side of the median line; on the posterior portion are three long spines on either side of the median line and one small median spine; four small spines are present on the lateral margin on either side. The second thoracic segment bears eight large spines and two small ones on either side of the median line; on the posterior portion is a small median spine: the epimeron of this segment is beset with four smatl spines. The third segment bears seren long spines and three small ones on either side of the median line, and one long spine on the posterior portion in the median line; the epimeron is beset with four small spines. The fourth segment bears eight long spines and two small ones on either side of the median line, and on the posterior portion in the median line two small spines close together; the epimeron is beset with two spines. The fifth and sixth segments bear earh tive long spines on either side of the median line; the epimeron of each segment is beset with three spines. The seventh segment bears three spines on either side of the median line; the epimeron is beset with three spines.

The first and second abdominal segments have each four spines on either side of the median line. The third segment has three spines on
either side of the median line. These segments are not separated from the terminal segment, but are coalesced with it. The terminal segment is rounded posteriorly. Bordering the lateral margins is a row of seren or eight epines on either side of the median line. The dorsal surface is irregularly covered with mumerous long and short spines. At the posterior extremity of the terminal segment are two very long spines-the longest on the body-directed backward. Between them and a little back of them are two smaller spines, also direeted backward.

The valves of the operculum are covered with mumerous small spines.

Both the anterior and the posterior pairs of legs are armed with many long and short spines. The anterior pairs are also fringed with hairs.

Three specimens of this species were coliected by the U. S. Fish Commission steamer Albutross at Rat Islands, the Aleutian Chain, at a depth of $2 \pi 0$ fathoms.

Type-Cat. No. 29082, U.S.N.M.

EPICARIDEA or BOPYROIDEA.

Family BOPYRIDE.

PARAPENAEON, new genus.

PARAPEN ÆON CONSOLIDATA, new species.

Body somewhat oral, about one and a half times longer than broad. Color uniformly yellow, without any markings.

Head with frontal border produced in a large quadrangular process, directed upward; posterior portion triangulate in shape. Eyes absent. The first pair of antenne are composed of three joints, the terminal joint being minute. The sectond pair of antemar consist of form joints.

The first two segments of the thorax have the auterior portion of the pleural plates ("lames

 ULEW OF FEMALE U, VESTLAL VIEW OF SIME. \times. pleurales") very large and conspicuons, and, although developed from the anterior part of the segment, they extend some little distance in front of the segments. The posterior parts of these segments have each a small lobe constrieted ofl, which may be regarded as the posterior portion of the
pleural plates of the segments. (Hansen so considers the posterior lober of the corresponding thoracic segments in his gems (imptione.) ${ }^{a}$

Fig. 18.-First laMELLA OF MARSUPLUM OF PARAPENEON CONsolidata. $\times 10$. In the two following segments the pleural plates are of this character, except that on one side of the body the anterior portion is greatly reduced and almost inconspicuons. The pleural plates in the three following segments are not divided by a furrow into anterior and posterior portions, but extend entire along the whole of the lateral margin of the segments. The orarian bosses are prominent and well developed on the first four segments.
The segments of the abdomen are all distinct, with the lateral portions of the first five produced into plates, the first two of which on one side are turned upward. These plates are not distinetly separated from the segments. The sixth or terminal segment is minute and rounded and withont pleural plates. The uropoda are a pair of small singlebranched lamellae attached to the terminal abdominal segment. The pleopoda consists of five pairs of doublebranched lamellae (ten on either side), the surfaces of which are closely and densely eovered with small rounded knobs, supposed to indicate rudimentary ramification.

The marsupium consists of five pairs of large smooth plates, orer-lapping in the rentral median line.

Fig. 19.-LEG OF SIXTH PAIR OF ADULT FEMALE OF PARAPENEON CONSOLIDATA. $\times 39$.

The basis of all the legs is furnished with a high carina.
Descrintion of male.-Body elongate. Head large, romnded. Eyes absent. Seven thoracic segments distinct, with lateral margins rounded. Abdomen all in one piece, the six segments not

Fig. 20.-MALE of PaRAPENEOON CONSOLIDATA. $\times 41$. indicated in any way on the dorsal side or lateral margins. Shape of abdomen triangular, with apex rounded. Pleopots neither developed nor in a rudimentary condition on the ventral side.

One female, with its male, was collected by Dr. F. C. Dale. U. S. Nary, on the U. S. S. Pulow, at Mogi, Japan. It was found on I'rrupencus dellei Rathbun.
The female of this species bears a great resemblance to the female of Ciryptiome domyrta Hamsen. The male differs, however, in having the segments of the abdomen all consolidated and forming a single piece, the male of Hansen's type species of the genus Cryptione having the abdomen distinctly segmented. each segment bearing a pair of rudimentary pleopoda, and the terminal segment provided with uropoda.

Typre.-Cat. No. 290st, U.S.N.M.
"Bull. Mus. Comp. Zool. at Harvarl College, XXXI, No. 5, Pt. 22, 1897, p. 113.

Young female of Phry,rus sp?? Body asymmetrical. Seguments of thorax defined only on the ope side: other side greatly swollen. All the legs of both sides present.

Segments of abdomen distinct. Terminal segment entire and produced in a long narrow process. Four pairs of double-branched pleopoda present. The outer lamellie have the proximal portion greatly dilated, being constricted about the middle on one side and terminating in a narrow elongated process; the inner lamellae are small, tapering processes directed

Fig. 2].-Yousg female of l'hryxis, speCIES.? a, DORSAL VIEW; b, VENTRAL VIEW. $\times 10$. toward the median line of the body.

The marsupium consists of four pairs of plates, four of these being large and conspicuous, the other four small and partly concealed by one of the larger plates.

Fig. 2゙. - 11 a Le OF PHRYXUS, SPECIES.? $\times 61$.

Male.-Head large, broadly rounded in front: eyes rery small, and situated at extreme post-lateral angulations; antenne long. Segments of thorax distinct; those of the abdomen fused into one segment, whose extremity is hroadly rounded.

Only one specimen, unattached, was ohtained by the U. S. Fish Commission steamer Albutrosis at Omai Zaki Light, at a depth of 36 to 48 fathoms.

The young female described differs from the young female of Phryxus abdominalis (Kroyer)" in the shape of the terminal segment of the body, in the shape of the outer lamellae of the pleopoda, and in having the inner branches of the pleopoda directed toward the median line.

The male differs from the male of P. abdominolis in the larger head, longer antennex, and differently shaped abdomen.

ARGEIA PUGETTENSIS Dana.

Argein pugettensis Daxa, U. S. Expl. Exp. (rust., II, p. S0t, pl. lin, fig. 7.Stimpone, Bust. Journ. Nat. Mist., V1, 1857, p. 71.-Richimbnox, Proc. I. .S. Nat. Mnseum, XN. I, 1899, p. 868.
Locality.-Tsuragi Saki Light, at a depth of 2.59 and 110 fathoms: Yokkaichi Light, at a depth of 13 and 16 fathoms; and Ohoro Saki, Japan, at a depth of 14 and 18 fathoms. All parasitic on (Trengon propinquas stimpson, except those from the locality first named. which are parasitic on Creanyon sp.

Another specimen was collected at Mogi, Japan, hy Dr. F. C. Dale (U.S.S. Paldos), which was parasitic also on (ifongom propimques.

II.

ISOPOIA COLLECTED IN JAPAN BY JORDAN AND SNYDER.

The material upon which this paper is based was collected in Japan hy Dr. David S. Jordan and Mr. J. O. Snyder while investigating the fishes of that region for the Hopkins Laboratory of Stanford University. Three new species, one of which is the type of a new genus, are added to the famm of that country. A list of the other species collected is included.

LAST OF REFERENCES.

Bate, Spexee. On Some New Australian Species of Crustaceal. Proc: Zool. Soc. London, 1863, p. 504 , pl. xli, fig. 7.
Bubde-Levis, f. Crustacea Isoporla Terrestria, pp. 266-268, Hannie, 1885.
D.sis, J. D). United States Exploring Expedition during the years 183s-ISt2 under the command of Charles Wilkes, U.S. N., Philadelphia, 1853, XIV, Crustacea, P't. 2, p. 741, pl. xLix, figs. 6a-h.
De Hidn, Whlem. Fama Japon., Crust., L, p. 227, fig. 7a-b.
Doldfos, Adrien. Les Idoteiles des Cotes de France. Feuilles des Jeunes Naturalistes, Paris, XXIV-XXV, 189:3-1895, pp. 1-5, 17-18, 38-40, 53-56.
Enwards, H. Milne. Hist. Nat. des Crustacés, Paris, 1840, III, p. 272, p. 157.
Leac'i, W. E. Cymothoadées, Dict. des Sei. Nat., Strastourg and Paris, XII, p. 353, 1818.

Mrers, E. J. A Revision of the ldoteide, a Family of Sessile-eyed Crustacea. Journ. Linn. soc., London, X Y'1, 1883, pp. 58-65.
Nicolet, Hercule. In Gay, Clandio. Ilist. Chile, l’aris, II I, 1849, p. 265.
Richambson, Marriet. Description of a new species of Ifloto from Hakodate Day, Japan. Proc. U. S. Nat. Museum, Washington, 1900, XXII, pp. 181-134.
Roux, P. Crustacés de la Mediterrance et de son littoral, Paris, 1828, p. $3, \mathrm{pl}$. xir, fig. 9.
Sohledte, J. C., and Menert, Fr. Symbolie ad Monographiam Cymothoarum, Crustaceorum Isopodum Familise, IV, Cymoithoidse, Tri. 1, Ceratothome. Naturhistorisk Tidsskrift, Copenhagen, 1883, XllI, 1p. 358-364, pl. xvi, figs. 1-7. Stebbing, T. R. R. A History of Crustacea, New York, 1893, !. 354.
——— South African Crustacea, Pt. 2, Cape of Good Ilope, Dept. of Agrieulture, Marine Investigations in South Africa, Cape Town, 1902, No. 12, 1901, pp. 50-59.

FLABELLIFERA or CYMOTHOIDEA. Family CYMOTHOIDむ. MEJNERTIA TRIGONOCEPHALA (Leach).

('ymothou trigonorephalu Leach, Dict. Sc. Nat., XII, 1818, p. 353.-Milne Edwards, Hist. Nat. Crust., 11I, p. 272.-De Haan, Faun. Japon., L, p. 227, fig. 7a-b. Ceratothoutrigonorephulu Soheedte and Meinert, Naturhist. Tidsskrift, (3) XIII, 1883, pp. 358-364, ph. xүı, figs. 1-7.
Meinertia trigonocephala Stebbing, Hist. Crust., 1893, p. 854.
Locelity.-Nagasaki, Hizen, Misaki, Sagami, Japan. (Collected by dordan and Snyder.)

Family SPHEROMIDAE.

SPH ÆROMA RETROLÆVIS, new species.

Body somewhat convex. Head large with eyes post-laterally situated. Segments of thorax subequal with exception of last one. which is shorter than any of the others. The epimera are drawn out into narrow processes at the sides of the segments. The epimera, howerer, are not distinct from the segments, but are consolidated with them. The last two segments of the thorax are provided on the posterior margin with four low tubereles in a tramserse row, the two on either side of the median line being more prominent than the others. The whole surface of the abdomen is rugose. The first segment has a transerse row of four tubereles. The terminal segment is posteriorly trumeate; the posterior portion is rather flat on the dorsal surface and is marmed; the more convex anterior portion is provided with two longitudinal rows of three low tubercles on cither side of the median line, the middle tuberele in each row being the most prominent; on either side of these two median rows of tubercles are two small tubercles also in longitudinal series. The uropoda do not

Fig. 23.-Abdomen aNd last TWO THORACH SEGMENTS OF SPHEROMA KETEOLEVIS, NEW SPECIES. $\times 8$. extend beyond the extremity of the terminal abdominal segment. The inner branch is smooth on both margins; in shape it is long and narrow, and pointed posteriorly. The outer branch is similar in size and shape to the immer branch, but is denticulate on the exterior margin, being armed with four teeth. The legs are in two series. The first three pairs are very slender and feeble and are directed forward. The last four are more robust. Only one apecimen was found at Nagasaki, Hizen, Japan, collected by Jordan and Snyder.

Type.-Cat. No. 2s965, L.S.N.M.

VALVIFERA or IDOTEOIDEA.

Family IDOTEID ※.

IDOTEA JAPONICA Richardson.

Idotel japmica Richardson, Proc. U. S. Nat. Museum, XXII, 1900, pp. 131-134.
Locolity.-Tokyo. Japan; Mororam, Hokkaida, Japan. Hakodate, Hokkaido, Japan. (Collected by Jordan and Suyder.)

PENTIAS, new genus.
PENTIAS HAYI, new species.
Body narrow elongate, four and a half times longer than wide; surface smooth; color in alcohol almost white.

Head twice as wide as long, slightly emarginate in front, with a small median point. Eyes situated at the extreme lateral margin, about the middle. First pair of antemm have the basal joints greatly dilated, the three following joints slender and not reaching beyond the second pedmenlar joint of the second pair of antenne. The second pair of antenns are extremely short, reaching, when retracted, only to the posterior margin of the first thoracic segment;

Fig. 24.-Pentias HAYI, NEW SPECIES. $\times 2$. the first joint of the peduncle is short, the second about twice as long, the last three equal in length and not much longer than the third joint: the flagellum consists of six short joints. Maxilliped with a fivejointed palp.

The first thoracic segment is deeply excarate, the antero-łateral parts being produced on either side. In the median dorsal line the first segment is half as long as the second. The third and fourth segments are equal in length and are the longest. The last three segments are subequal and are about half as long as the two preceding ones. The epimera of the second, third, and fourth segments extend half the length of the segment, ocenpying only the anterior half of the lateral margin: those of the fifth segment extend twothirds the length of the segment: the epimera of the last two segments oceupy the whole of the lateral margin.

The abdomen consists of a single segment, very long, equal in length to the last five thoracie segments and with three suture lines on either side, near the hase. The sides of the segment gradually converge to a point near the apex, where they form broadly rounded angles and meet some distance below in a long acute point.

The legs are very small and slender and terminate in bi-unguiculate dactyli; the two unguli are of equal length, and the character very distinctly marked.

One specimen, a female, was collected by Jordan and Suyder at Misaki, Sagami, Japan.

Typre-Cat. No. 28963 , U.S.N.M.
This species differs from Crulbyzos Spence Bate in having the head well separated and distinct from the first thoracic segment, while in Spence Bate's genus the head and first thoracie segment are fused and in having the

Fig. 25.-MAX1LliPED OF PENtias hayi. epimera distinct. It differs from the type species C. Iongicandatrs in having the eyes placed in the middle of the lateral margin instead of at the antero-lateral angles; in having the basal joints of the tirst pair of antenne dilated: in the much shorter first pair of antenne; in the fewer number of joints in the flagellum of the second pair of
antemat (Miers writes " that there are from twelve to fomenten joints in the flawellum of the second paic of antemme in (? (Iloten) Iomyionndutus); in the much shorter second pair of antemar: in having the body evenly comrex, while in (! Iongicandatio. " the dorsal surface of the thoracic segments is nearly flat. while the margins with the epimera stand nearly perpendieular to them;" in having the first thoracice segment much shorter than the four following segments. which are about equal in length. while in C. lmmicomlutus the first segment is equal in length to the two following segments: in having the head broader than long, while the reverse is true of ('. Imgierndatros, and in the more tapering terminal abdominal segment, the sides being more nearly parallel from the base to about the middle of the segment in C. Iongiceuclutus.

This genus differs from all the other known genera of Idoteide except Glypticloter Stebbing ${ }^{b}$ and Crablyzox in having the maxillipeds with a five-jointed palp. It is in agreement with Glyptidoto in having the epimera of all the thoracic segments, from the second to the seventh inclusire, distinct from the segments, and in having a miarticulate abdomen. It differs, howerer, from Stebbing's genus in not having sculptured joints to both pairs of antemax, and in not having the legs more or less subchelate in character. The abdomen of Glyptidoten has not the lateral rudiments of several coalesced segments.

The genus Cralyzas was formerly included in Idotea by Miers in nis subdivision of the genus corresponding to Stemosomm Leach. The maxillipeds of Stemosom, have, however, four-jointed palps as in Tdoted Fabricius, ${ }^{c}$ while in ('rabyzos they have five-jointed palps (Ntebbing).

ONISCOIDEA.

Fimily LI(illD) E

LIGIA EXOTICA Roux.

Ligirt exoticrt Roux, Crust. Merlit., 18:2s, p. :3, pl. xılı, fig. 9.
 Expl. Exp., p. 7tl, pl. xidx, fig*. 6a-h.-Nicolet in Gay, Hist. Chile, III 1849, 1. 265.
Ligin axotira Bunde-Lund, Crust. Isop. Terrestria, 1885, p1. 26ti-26s.
Lecality.-Tokyo, Japan. (Collected by Jordan and Snyder.)
Misaki, Sugami. Japan. (Collected hy Jordan and Suyder.)

[^16]$$
\text { Proe. N. M. rol. xxrii } 03-4
$$

EPICARIDEA or BOPYROIDEA.

Family BOPYRIDE.

DIPLOPHRYXUS, new genus.

Body of female very asymmetrical, one side being much more swollen than the other side. All seren legs present on the smaller side. The

Fig. 26.-Female of Diplophryxes jordani, new sPECIES. $\quad($, DORSAL VIEW; \quad, VENTRAL VIEW. $\times 8$. first leg, only, present on the swollen side. Segments of thorax defined only on smaller side.

Abdomen composed of only five segments, the first four carrying each two pairs of double-branched appendages, a pair on either side. The inenbatory limella consist of four pairs of plates. those of the smaller side being greatly reduced and crowded together, the lamelle of the swollen side sufficing to cover the marsupial pouch and extending as large plates over the whole ventral area.

This genus differs chictly from I hry,rmes Rathke, in having the two pairs of pleopoda, one pair on either side of the body for each segment, donble-branched instead of single-branched.

DIPLOPHRYXUS JORDANI, new species.

Body of female very asymmetrical, one side being very much more swollen than the other. Outline very irregular.

Head deeply sunk in thorax, and surrounded by first segment of the thorax: frontal margin covered by the projecting lobe of the first lamella of the incubatory pouch which folds orer on the dorsal side. Antenne smatl. Otal area wholly concealed on the ventral side.

Segments of thorax defined on one side only, the smaller side. The first five are small and ctosely crowded together, the sixth somewhat longer, the

Fig. 27.-HEAD AND FIRST PAIR OF ANTENNE OF DIPLOPHRYXLS JORDANF. $\times 14$. seventh the longest. All seven legs are present on the smaller side, all, exeept the first one, being small and feeble. Only one leg is present on the other, the swollen side, this one belonging to the first thoracie segment.

Abdomen narrow, elongate, and composed of five well-defined seg-
ments, the last segment being small, rounded postromerly, and without appendages. The four anterior segments are provided each with two pairs of double-branched appendages, a pair on cither side, the outer appendages of the swollen side being much more developed and clongate than those of the smaller side, and extending as long leaf-like lamellae orer the incubatory ponch: the separation of each appendage into two branches occurs some distance from the segments.

Incubatory ponch extremely large, occupying the whole rentral side of the thorax and extending laterally on one side a considerable distance beyond the ill-defined outline of the body. The lamella of the narrow side of the body are small, and crowded together as four small plates. Those of the other side are developed and suffice to form the marsupiun. Only four plates are present on this side also, the first lamella extending anteriorly over the dorisal surface of the head, concealing the antenna of the first pair which are composed of two very much flattened joint:.

Color of female white, with large areas of dark reddish brown on the marsupium and thorax.

Male--Body narrow, elongate. Segments of thorax distinct. Abdomen composed of a single piece, with no

Fig.28.-Male OF I)IPLOPHRYXVS JORDANI. (i1. trace of segmentation; outline romeded, or ovate. No ruliments of appendages. Eyes wanting.

Three specimens were found on the abdomen of lediemon serrifer (Stimpson). They were collected by Jordan and Snyder at Misaki. Sagami, Japan, in $19 \% 0$.

Type-Clat. No. 2s:6t, U.S.N.M.

III.

TWO NEW CYMOTHOIDS FROM THE WEST COAST OF CENTRAL AMERICA.

The two species new to science, herein deseribed, were collected by Dr. C. H. Gilbert on the west coast of Central Ameriea from Pamama and Mazatlan. Both were found in the month of Jhmil howpes.

LIST OF REFERENCES.

Edwirds, Milane. Mist. Nat. Crust., III, p. 271.
Scmodete, J. C., and Meinert, fr. symbolar ad monographian ('ymothoarmm, Crustaceorum Isoporlmon Familiar-IV. ('ymothoidar, Trib. II. ('ymothoinar.
 33th, 1]. xut, figs. 7-8.
———. Symbole ad Monographiam Cymothoirum, Crustaceorum Iropodum Familiae-III. Saophridar. IV. Cymothoidir, Trib. I. Coratothoiner. Natur-
 figs. 1-1, 5.

FLABELLIFERA, or CYMOTHOIDEA.

Family CYMOTHOIDE.

INDUSA" CARINATA, new species.
Body repy convex, having a decidedly hunched appearance. Thorax large, rounded, almost as wide as long, the last two segments rapidly converging to the narrow abdomen. Abdomen

Fig. 29.-HEAD AND First THORACIC SEGMEXT OF InDUSA CARINATA. nearly three times narrower than greatest width of thorax, with all the segments of equal width.

Head about two and a half times narrower than first thoracie segment and four times narrower than fourth segment; front triangular in shape and produced into an acute point projecting between the basal joints of the antemne. Eyes distinct and situated at the sides and about the middle of the head. First pair of antemme, which are almost contignous being separated only by the rery acute median point, reacls to the eyes; flagellum seren jointed. Second pair of antenma extend to the posterior margin of the head; flagellum nine jointed.

First thoracic segment romed anteriorly and posteriorly, the sides of the segment surrounding the head, the lateral angles extending to the eyes. The first four segmente gradually increase in width. The fourth and fifth are about equally wide. The sixth and seventh rapidly decrease in width, converging to the narrow abdomen. The epimera are well dereloped on all the segments with the excep-

FIG. 30.-INDUSA CARINATA, NEW SPECIES. $\times 2 \frac{2}{3}$. tion of the first; they are narrow and clongate, rombled posteriorly and not reaching the posterior margin of their respective segments.

Fig. 31.—Lefiof SEVENTII PAIR OF INDUSA "ARINATA. $\times 7$.

The abdomen is likewise very convex and is nearly three times narrower than the thorax at its greatest width. The segments are of equal width. The terminal segment is rounded posteriorly or slightly triangular. The mropoda are very short. less than half the length of the terminal segment; the branches are equal in length.

There is a high carima on the four posterior pairs of legs, and a small one on the three anterior pairs. Color reddish brown.
Two specimens, a mate and a female, were collected by Mr. C. H. Gilbert from the west coast of Panama. They were found in the month of Mugil hompers.

Typm-Cat. No. 2s961, U.S.N.M.

[^17]
MEINERTIA GILBERTI, new species.

Head set in first segment of thorax. whose antero-lateral prolongations extend forward to athout the middle of the eye. Shape of the head some what triangular; posterior margin straight; anterior margin produced somewhat at the middle, but quite romded. Eyes rery large, far apart, and situated at the sides of the head. First pair of antenne consist of seren joints and extend to the midddle of the eye: second pair contain cight joints and reach the posterior margin of the head.

The first four segments of the thorax are about equal in length, the second being somewhat shorter. The last three segments decrease gradually in length. The epimera are narow pieces at the sides of the segments: in the first five segments they do not reach the posterior margin of the segments, although the fifth pair more nearly reach the posterior margin than the others; the epimera of the last two segments. reach quite to the posterior margin.
The first segment of the abolomen is as wide as the last thoracic. The others are wider, increasing in width gradually to the terminal segment. The last segment is about three times as broad as long, and

Fig. 32.-MEINERTIA GILBERTI, NEW SPECIES. $\times 2 \frac{2}{3}$. quadrangular in shape. The wopoda are short. reaching only a little beyond half the length of the ablomen: both branches are alike and of equal length.

The legs all terminate in long recurved unguli. There is no high carina dereloped on the basis of any of the legr.

Color reddish brown.
Three sperimens, two males and one female, were eol-

FIG. 33.-LEG OF SEVENTH PAIR of Mernertia GIIBERTI. $\times 7$. lected by (. H. Cilbert at Mazatlan. They were found in the mouth of Mingil hoxpes.

Typre- Cat. No. 29080, U.S.N.M.
This species differs chiefly from . I. !ementichundi; (Mine Edwards)" from near locality, in the absence of high carina, which in M. gaudelamelii are strongly dereloped on the lant four pairs of legs: in the much shorter uropoda, which in J. grumdichandia extend beyond the terminal segment, both branches of which are narowty pointed at their extremities: in the much larger eyes, and in the smaller size of the speecies, the adult female being only half the size of the adnlt femate of M. gum lichundii.

[^18]IV.

AMERICAN EPICARIDEA.

American Epicaridea are represented in the following four families: Bopyridx, Dajida, (ryptoniscidx, and Entoniscida. At the present time no representativer of the Entoniseidar are known to the North Ameriean famba, and no representatives of the Dajida have heen recorded from south American waters.

In the following pages the forms added to the list given of those already known are all representatives of the family Bopyrida. The material studied belongs to the U. S. National Musem and was mostly collected by the U. S. Fish Commission steamer Albutross. Other collectors are Mr. Henry Hemphill, Mr. George M. Gray, Mr. W. C. Kendall. Dr. C. W. Richmond, Mr. .J. B. Henderson, jr., Mr. C. T. Simpson, and Dr. G. Brown Goode. These collections were made at different times and in various localities. Some pecimens were also sent from Union University to the U. S. National Maseum; they were collected by Prof. H. E. Webster.

Following the classification of (i. O. Sars." who combines the three families of Giard and Bonnier, Cyproniscidx, Cabiropsidex, and Cryptoniscidx. into one family. Cryptoniseidx, the form Clypeomiseus meinerti Giard and Bomier has been assigned to the family Cryptoniscide. Sars also cancels the family Microniscide. for he considers Microniscus, the only known genus, to represent not an adult condition, but only a transitory larval stage in different Epicaridea. The Microniscus stage Sars found to be intermediate between the two larral stages preriondy known, the larva of the first stage and the Cryptonisens stage, and the Microniscus larvae of two different Epparid families was proved to be always parasitic on Copepoda. Giard and Bomier do not acepet Sars's conclusions. hut assign to Micromixcus the ramk of a separate family. Microniscide. which they believe represents the ancestral form from which the other Epicaridea have descended.

Contrary, also, to the hypothesis of Ciard and Bomier, who write that one species of parasite can not be found on different species of hosit, Sars" has pointed out that for IMry,res ulbamimulis Kroyer ten different species of host have been recorded, representatives of two ditferent genera. spiprontoctrien and I'andalus: for Bopyroides hippolytes (Kroyer), three different species of spirontocaris; for Bopyrus sumillormm Latreille, three different species of Leender: for Pseudione atfinis G. O. Surs, two different species of Pindulns: for Pseudione limndinemin (Spence Bate and Westrood), two different species of EAnprigurux; for Isendiome crenulatu (i. O. Sars, two species of

[^19]Munidu: for Incjus mysidis Kroyer, two different speries of Mysix; for Aspidoplloy,rems peltatux (: O. Sars, four different species of Ery-

 belonging to the Isopod genera, Einyerope and Ilyurechlam.

In the present paper, ten species of host are added to Sarsis list of those on which Phery,res chedrmimulis is found to be parasitic. The list now includes the following additional species: P'mdulus leptocerus, Spurontocaris yrentandica, S. arcuutu. S. townsemdi, S. tridens, S. macrophthelme, S. suckleyi, s. gutumerdii bedelini, s. fubricii, and S. biunguis. Spence Bate also records it from I'fexionike semilienis.

Argeia puggettensis Dana is found parasitic on fifteen species of host representing two different genera of Crangonidx, Crunyon and Sectocrangon.
The list of hosts for Bopyroides hippolytes (Kroyer) is also enlarged and now includes the following additional species: spirontucaris suckloyi, S. bispinosel, S. arcuate, S. brecirostris, P'andulnis loorcalis, P. momteryui, and P'enclulopsis dispere.

Peudione gulucenthix Hamsen, is herein recorded from two additional species of host. Mmidde subrugose and Mumidd qumadrixpina. A new species of I'mopyrms described in the following pages, I ? bithynis, is found on two different species of Bithynis, B. oliemis, and B. acenthures.

LIST OF REFERENCES.

Bite, Speace. Characters of New Species of Crustaceans discovered by J. K. Lord (in the coast of Vancouver Island. Proc. Zool. Noc. London. 186t, p. 668.
Bate, C. Spence, and Westwool, Jons Obadiah. A history of the British sessileeyed Crustacea. London, 186is, 11.
Bate, C. Spence. In Lord'n Naturalist in British Columbia. London, 1866, II, p. 282.

Report on the Crustacea Macrura collected by H. M. S. Chullenger during the years 1873-187t. Challenger report, London, 1888, XXIV, l't. 52, p. nit; also pp. 645-646.
Bicumolz, Reinioln. Zweite dentsche Nordpolfahrt in den Jahren 1869 und 1870, unter Führung des Kapitins Koldewey. Leipriy, 1sit, H, 1't. 8, Crustaceen, pp. 286-288, pl. n, fig. 2.
Caman; W. T. On a collection of Crnstacea from Puget sound. Ann. N. Y. Acad. Sci., New York, 1898, NI, pp. 274-284, pl. xxxwr, fig. ל̀.
Corsalia, Emilio, and Panceri, Piolo. Oservazioni zoologiche ed anatomiehe sopra un nuovo genere di Isopodi sedentari (fryge lurenchichis). Ment. R. Accad. Scı., Torino, $1861(\underset{2}{ })$, N1ベ, p. 114.
Dana, James D. Crustacea. U. N. Exploring Expedition during the years 18:38, 1839, 1840, 1841, 1842, under the command of ('harles Wilkes, L'. N. N., Philadelphia, 1853, MIV, Pt. $2,18 \pi 3 . \quad$ Itlas.
Ebwarns, Hexri Mhae. Histnire maturefle des Crustacés, comprenant Janatomie, la physiologie et la elassification de ces amiman. laris, 1840, 111, p. 283.

Ghrd, Alfred, and Bonviek, Jules. Contributions à l'étule des Bopryiens. Trasaux de l'Institut zoologique de Lille et du Laboratoire de zoologie maritime de Wimereux, Lille, 1887, V, 1p. 68, 70, 2:22-237, 239-240.
————. Contributions à l'étude des Épicarides. XX. Sur les Épicarides, parasites des Arthrostacés, et sur quelques Coprpoles symbiotes de ces Épicarides. Bull. scientifique de la France et de la Belgique. Paris, 1893(4), XXV, 1893, p1. $421-436,4+4$.

Sur le genre Entione. Kossmann Comptes Rendes de l'Académie dew Sciences, Paris, 11 Octobre, 1886.
Gisiser, Carl. F. A wingular Parasitic Isopod Crustacean and Some of its Developmental Stages. Boston, 1882. The American Naturalist, XVI, 1882, pp. 6-12.
——— Bopyroides latreuticola, a new species of Isopod Crustacean parasitic on a Gulf-Weed Shrimp. Boston, 1882. The American Naturalist, NVI, 1882, Pp. 591-594.
——. The Common Prawn and its Parasite. Seientific American, New York, NLY, Sept. 3, 1881, p. 151.
Haseen, H. J. Reports on the Dredging Operations off the West Coast of Central America to the Galapagos, to the West Coast of Mexico, ant in the Gult of California, in charge of Alexander Agassiz, carried on by the U. S. Fish Commission steamer Illotross, during 1891, Lieut. Commander Z. L. Tammer, U. S. Navy, rommanding. Bull. Hus. Comp. Zool. at Harvard Cullege, Cambridge, 1897, NXXI, No. 5, Pt. 22, The Isopoda, 1897, pp. 111-124, pls. mi-vi.
Harger, Oscar. Report on the Marine Fsoporta of New Fingland and adjacent Waters. Report of the I'. S. Fish Comm., Washington, 1880. Pt. I'I.
Hareier, Oscar; Smitit, Sidney I.; Verrill, Amdinon Emory. Catalogue of the Marine In vertebrate animals of the Southern Coast of New England and arljarent Waters. Report U. S. Fish Comm., Washington, 187t. I't. 1, p. 573 (279).
Kossmann, Robby. Studien über Bopyriden. III. Ione thoraciat und Cepon Portmi. Mittheilungen ans der Zoologischen Station zu Neapel, Leipzig. III, 1881, pp. 170-182, pl. x.
——. Zoologische Ergebnisse einer Reise in die Küstengebiete des Rothen Meeres, III, Malacostraca, Leipzig. pp. 119-124, pl. ix, figs. 1-7, 1880.
Kroyer, hevrik. Boprys abdominalis. Nat. Tiddeskr. R. 1, Copenhagen, 1841. III, 1840-41, 111. 102-289.
-_Grölands Amfiporler. Kongelige Danske Videnskabenes Selskabs naturvidenskabelige og mathematiske Afhandlinger, Copenhagen, 1838. V1I, p. 306 (78), pl. iv, fig. 22.

Monografisk Fremstilling af Slægten Hippolytes nordiske Arter. Kongelige Danske Videnskalhenes Selskals naturviden-skaloelige og mathematiske Afhandlinger, Copenhagen, 1842, LX, pp. 262-263.
-_ Voyage cll Scandinavie, en Laponie, au Spitzherg et anx Feriie, Zoologie, Crustacés, Paris, 1849. (Published under the direction of M. Paul Gaimard.) 1849, pls. xxym, figs. 1-2; xxix, fig. 1.
Leidy, Joselin. Contributions toward a knowledge of the marine invertebrate fana of the coasts of Rhorle Island and New Jersey. Philadelphia, 1855. Journ. Acad. Nat. Sci., (2), III, p. 150, pl. xı, figs. 26-32.

Notices of some animals on the coast of New Jersey. Proc. Acad. Nat. Sci. Philadelphia, 1879, Pt. -2, p. 198.
Lillieborg Wrinela. Hafs-Crustaceer vidKulaberg. Efversigt af Kongl. Vetens-kap-Akademiens Forbandlinger, stockholm, 1852, IX, p. 11.
Lockington, Willam N. Description of a New Genus and Species of Decapod Crustacean. Proc. Cal. Acad. Sci., V'li, 1876, p. 57, San Francisco, 1876; Ann. Mag. Nat. Hist., 1878, pp. 299-300.

Lítken，Cmmatian Frienmen．The Crustacea of fireentand．Mamal of the natural history，geology，and physies of（ireenland and the neighboring regions；prepared for the use of the Areticexpedition of 1875 by T．Rupert Jones，Lomulom， 187 n ，p． 150.
Metzger，Abolf．Nordseefahrt her Pommerania．Zoologishe Ergehnisseder Norl－ serfahrt， \mathcal{I} ．Crustaceen aus den Ordangen Edriophthalmata n Porlophthal－ mata．Aus Jahrshericht der Commission zu wiss．［＇utersuchung des dentsehes Meer，im Kiel，Jahre 1872－187：，Berlin，1875，1．2s6．
Mark，Emwabd Joms．Report on the Crustacea coblected hy the naturalists of the Aretic Expedition in 1875－1876，London，1877，Amm．Mag．Nat．Ilist．，（4），NX， 11］． $64(14)$ ， 65 （ 15 ）．
Montage，Georie．Description of several Marine Animals found on the south Coast of Devonshire．Trans．Limn．Soc．London，1X，1808，1u．103－10t．
Müller，Frıtz．Bruchstücke zur naturgeschichte der Bopyriden Jen．Zeitschrifte Nat．，Leipzig，1871，VI，1870，मp．51－73，pls． 11 and 15.

Entoniscus porcellana，eine neue Schmarotzerassel．Archiv für Naturg．， Jahrg．NXVIII，Berlin．I＇t．1，1862，pp．10－17，pl． 11.

Für Darwin．Leipzig，18tit．Translated by F．Debray in Bulletin Sifen－ tifique du Nord，1882－83，figs． $16,41,42, \mathrm{pp} .422-449$ ．
Normin，Alfred Merle．Crustarea，Tunicata，Polyzoa，E‘hinodermata，Artinozoa， Foraminifera，Polyeistina，and Spongida in＂Preliminary Report of the Biolog－ ical Results of a Cruise in H．M．S．Valorous to Davis Straits in 1875．London， 1876．B．J．Gwyn Jeffreys．Proc．Royal Soe．，XXV，p． 209.

Last report on dredging among the Shetland Isles，Pt．II，Crustacea，ete． Report of the British Association for the Adrantement of Science for 1 sti 8 ， Reports on the State of Science．London，1869，p． 288.
Oulin，Axel．Bidrag till Kamedomen om Malakostrakfaman i Baftin Bay och Smith Sound．Akad．Afhdlg．Lund．Lumd，1895．NXII，M1．18， 19.
Packame，Alpifets s．Observations on the glacial phenomena of Labrador and Maine，with a view of the recent invertebrate fauna of Labrador．Memoirs of the Boston Society of Natural History：Boston，1867，I，1．295，pl．vin．fig． 3.
—— Koology for High Schools and Colleges．New York， 1881.
Ratike，HeinRich．Beitrage zur Fauna Norwegens．Nova Acta Academire Cesarese Leopoldino－Caroline Nature Curiosorum．Breslan and Bonn，1843， XX，p．40，pl．11，figs．1－10．
Richarman，Harriet．Key to the Isopods of the Atlantic Coast of North America with Descriptions of New and Little known Species．Proc．V．S．Nat．Museum． Washington，1901，XXI11，ple．576－579．

Key to the Isopods of the Patific Coast of North Amerita with Descriptions of Twenty－two New Species．Iroc．I．S．Nat．Museum，Washingtom，NXl． 1894，pp．867－869．

Results of the Branner－Agassiz Experlition to Brazil．Pt．2，The Isopod Crustacea．Proc．Wash．Acad．Sci．，II，1900，PJ．157－159．
Sars，G．O．Crustacea of Norway．liergen，1s： 225 ，pl．Lxxxis，fig． 2 ；pl．xxvin，fig． 1.

Prodromus descriptionis Crustaceormmet l＇yenogonidarmm，quat in experdi－ tione Norvegica amon 1876，boservavit（i．（）．Sars．Arehiv for Mathematik og Naturvidenskab，Christiania，187
 Nat．Mus．，II，1879，1尸．157－158．
Siebming，T．R．li．A History of Crustaea，lierent Malatostraca，New Vork，1893， 1p． $392-419$ ．
Steenstrup，Jabetis，and Lüther．Christian Fmembicif．Mindre Medelelelser fra Kjöbenhavns Lniversitets zoologiske Juseum．－2．Forehöbig Notits om danske Hav－Krebsilyr．Videnskabelige Merdelelser fra den Naturhistoriske Forening i Kjöbenhavn，Copenhagen，1862．1861，II，Vol．III，1．っご云（！）．

Stmpon, Whama. Cristacea and Echmorlermata of the Pacific Shores of North Americal. Jomrn. Bost. Soc. Nat. Hist., 1857, VI, pp. 71-73.
—— Synopsis of the marine Invertebrata collected by the late Aretic Experlition under 1)r. I. i. Hayes. Proc. Acad. Nat. Science Philadetphia, 1863. XV, $186: 3$, 1. 140.
Thompons, M. T. A New Isopot parasitie: on the Hermit Crab). Bull. U. S. Fish Commiswion, 1901, pp. $53-56$, pls. is and x.
Walz, Remale. Ueber die Familien der Bopyriden mit besonderer Berucksichtigung der Fama der Adrias. Aheiten aus d. Zoologischen Instituteder Univers. Wien, 1882, IV, p. 59.
Whans, II. V. Marine Biology at Beaufort. The American Naturalist, 1900. NXXIV, 口,

NORTH AMERICAN EPICARIDEA.

EPICARIDEA or BOPYROIDEA.

Family BOPYRID E.

PHRYXUS ABDOMINALIS (Krøyer).

Bopyrus abotominulis Krbyer, Nat. Tidsskrift, R. 1, III, 1840, pp. 102-289, pls. I, if; Monog. Fremst. Sliegten Hippolytes norliske Arter, 1842, p. 263; Voy. en Scand., Crust., 1849, pl. xxix, fig. 1.
Phry.rus hippolytes Rathee, Fauna Norwegens, 184:, p. 40, pl. 11, figs. 1-10.
Phryrus abotominalis Lillaeborg, (Efvers. Kongl. Vet. Akad. Forh., LX, 1852, p. 11.-Steensthep and Lüthen, V'idensk. Meddelelser, 1861 I, p. 275 (9).Bate and Weatwon, Brit. Sessil-eyed Crust., 11, 186\%, p. 234.-Norman, Rep. Brit. Assoce., 1869, p. 288; Proc. Royal Noc. Lond., XXV', 1876, p. 209.Bechuolz, Zweite deutsiche Nordpolfahrt, 1874, p. 287.—Metzger, Nordseefahrt der Pommı, 1875, p. 286.-Miers, Amn. Mag. Nat. Hist. (4), NX, 1877, p. 6in (15).—smith in Harger, Proc. U. S. Nat. Mhe., II, 1879. p. 158.-Marger, Rep. U. S. Fish Comm., 1880, P't. 6.-Axel Ohlin, Bidrag till Kannedomen on Malakostrakfannan i Baffin Bay, och smith Sound, 1895, pp. 18-19.Richardson, Proce. U. S. Nat. Mas., XXILII, 1901, p, 576.
Localit!y. Cireumpolar in distribution.
Atlantic coast localities: Massachusetts Bay on P'amlalus loreenlis, Spirontompis spimus. S. securifromes, and Pandulus montarfui: Cashes Ledge, Gulf of Maine, on Pamdalne borealis and S. pmsiola: Georges Bank on I'melalue leptocerns: Halifax, Nova Scotia, on S. pusiola, S. spimms. and x. secourifions; northeastern part Grand bank on S. gaimamelii. and S. giblm: Cape Cod on I. momtagui. I'. leptocerus, S. secturifrons, S. pusiolu, and N゙. polaris; Grinnell Land, Discovery Bay, (ireenland, Cape Dudley Digges on S. phippsii and S. potaris; Inglefield Gulf on S. pmaris; $73^{\circ}+8^{\prime} \mathrm{N}$. lat., $80^{\circ} 30^{\prime} \mathrm{W}$. long., on S. polaris: $6 t^{-} 5 f^{\prime}$ N. lat., $66^{\circ} 18^{\prime} \mathrm{W}$. long., on s . phipmï: off Marthas Vineyard, on I'andalos leptocerns and S. securifroms; Casco Bay, Maine, on I^{\prime}. bormelis.

Pacific coast localities: Admiralty Inlet, Puget Sound. Washington, On Špimmemerris grambundica; off N. Head, Akutan Island, Alaska, on S.arcmutu: Straits of Fuca, between Washington and Vimeonver Island,
on ふ．tommsemdi：Admiadty Inlet．Puget Found，Washington．on N． tridens：Washington Somud，Straitio of Fuca，Washington，on š．tridens；
 ofl Yahwhit I ladd，Washincton．on ぶ．murrophthalmm：Ilinlink llar－ bor，Unalaskal，on N．suchleyi：Aretic Ocean on S．guimurdii betchrof （Bell）：Plover Bay，East Siberia，on Ň．pmlaris（Aahine）；Alaska on 心．

 California．on S．mucrophthelma：Straits of Fuca on 心．tomensemdi Rathbun：Philippine lslands on Plesiomilat semilewis（according to Spence Bate）．${ }^{\text {S A so recorded from British Isles；Scandinavian coast：}}$ Spitzbergen；Kara Nea：coast of Norway：depth，Sto zot fathoms．

STEGOPHRYXUS HYPTIUS Thompson．

Stegophrym．hyptize Thompon，Ieport U．S．Fish（＇omm．，1901，pu．53－56，pls． IX， x ．

Lerelity．－Great Ifarbor：Woods Hole：Hadley Marbor，Nashon； Edgartown and Warwick，Rhode Island，on I＇temme lonyicurpus．

STEGIAS，new genus．

STEGIAS CLIBANARII，new species．

Head deeply set in thorax．hroader posteriorly than anteriorly， longer than hroad，and with straght frontal margin．First pair of antenna risible on dorsal surface，just anterior to front，as two suall lohes．each antemas terminating in a mi－ mute joint．Second pair of antemme alvo visible on dorsal sur－ face lying on either side of tir：s pair of antennae，cach anten－ na terminating in a flagellum compossed of several minute joints．

Thorax divided in－ to seren distinct seg－ ments．The first three surromed the head and ate closely crowded together．The other four are very murh longer and are of nearly equal length，the fifth being murh longer at the sides than the others．The first fire segments at the sides are directed forwiod．
the five paiss of legs all extending in an anterior direction. A considerable spate separates the fifth pair of legs from the sixth pair. The sixth pair of legs, as well as the seventh pair, are placed at the posterior extremity of the sixth and seventh segments, respertively. The epimera of the first four segments are distinct as narow ridges on the lateral margins of each segment. The ovarian bosses are also present on these segments.

The abdomen is composed of six distinct segments, the first three of which are provided with a pair of trimamons pleopods, two dorsal branches and one rentral branch to each pleopod: the next two segments, the fourth and fifth, are each provided with a pair of biramons pleopods, both hranches of each pleopod being dorsal, the ventral branch, corresponding to that of the first three segments, not being represented; the sixth segment of the ablomen is furnished with a pair of simple, elongated uropoda, equaling in length the dorsal bramehes of the pleopoda of the other abdominal segments.

The marsupinm is composed of tive pairs of lamelle , the lamellae of the fifth pair heing very large and ocrupying almost half of the rentral side of the thorax.

Male unknown.
Only one specimen was collected by Dr. Ga . Brown Goode at the Bormudas in 1856-7\%. The parasite was found attached to Clibamarims tricorlor.

Type in the Peabody Museum, Iale University.
This genus differs chiefly from Stegophuryrns Thompson, to which it is closely related in having the pleopoda of the fourth and fifth abolominal segments biramons instead of triramous; in having the uropoda long and leaf-like. similar in shape and size to the branches of the pleopoda, while in Stegophryms ligptins, the type species of the gemms, the uropoda are small, rounded, and knob-like. with a minute conical prominence between them: and in not having the sixth thomade segment greatly longer than the others.

ARGEIA PUGETTENSIS Dana.

> Argein pmgettrnsis Duxi, U. S. Expl. Exp. Crust., II, p. 80t, pl. uni, fig. 7.Stimpon, Bost. Joume. Nat. Hist., VI, 1857, p. 71.
> Argeia rp.? Caman, Amm. N. Y. Acal. Sci., NI, No. 13, 1898, p. 281.
> Argeia pugettosis Richarinon, Proc. [T. S. Nat. Museum, NXI, 1899, p. 868.

Lenculity.-On ('rom!on munitu Danar. at I'nget Sound: off Cape Beale, Vanconver Island. On C'remgon alasernsis Lockington, off Cape seniarin, Alaska; at Davidson Bank, Alaska: east of Amak Island, Alaka; ofl' Cape Strogonotf, Alaska; northwest of Vnimak Island, Alaska; Kouloulak Bay, Alaska; off Columbia River, Oregon; Gulf of Cicorgia. British Columbia. On Cremgem dalli Rathbun, South of Amak Island. Alaska. On C'rongon ulasernsis clongetet Rathbun, off

Cohmbia River, Oregon. On Nectocrengom merifer Rathbun, ofl North Head, Akutan Island, Alaska; west of Pribilof Islands, Alaska. (On Crenten fremerisecorm, enyunstimetuer Rathbum. Straits of Fuca: Gulf of Georgia, British Columbia. On Tectocreangon nigricendel Stimpson, ofl Port Ano Nuevo, California. On Sectorrangon crases Rathbum, off Cape Seniarin, Alaska; off Cape Newenhan. Alaska; north of Bird Island. Shumagins Alaska: Bering Seat, off the Pribilof Islands: Semidi Islands.

 FEMALE; b, VENTRAL VIEW OF AIDLLT FEMALE. $11 \frac{1}{2}$.

On Sectocromyon lar (Owen), off Rakovaya Bay; Avatcha Bay: off Cape Strogonoff; ofl Kouloulak Bay and off Bristol Bay, Alaska: off Cape Menchikoff, Alaska; off

Flis. 36.-. 1 RGEIA PUGETTENSIS, MALE. $\times 22$. Khondoubine Islands, Alaska: off mouth of Yukon River. On Vectucrenyom uluseensis Kingsley, southwest of Hagemeister lsland, Alaska; south and northwest of Unimak Island, Alaska; off Moorovakoy Bay, Alaska; Davidson Bank, Alaskat; ofl North Head, Akutan Island, Alaska; south of San Diego Bay, California: off Rootook Island, Alaska: Petropautski, Kamehatka; off Koukoulak Bay, Alaskat; between Bird and Nagai Islands, Alaska: L'nimak Pass; off Cape Johnson; sonthwest of Samakh Lslands. Alaska; off Grays Harbor, Washington; off Destruction Island: Bering Sea, oft Akutan Pass. On C'romym nigpormuculutu Lockington, at San Diego Bay. California: off Tillamook Rock, Oregon: Monterey Bay. California: off Cape Johnson. On Crangom commmmis Rathbun, ofl' Grays Itarbor. Washington; off Columbia River, Oregon; San Luis Ohispo Bay, Califorma: Ilinlink Harbor. Unalaska; Straits of Fuca: south of San Diego Bay, California; off Rootook 1sland, Alaska; ofl Falmouth Harror, Shmagins, Alaska: Bering Sea, off Akutan Island: northwest of Unimak Asland, Alaska; off Point Arena, Califormia; Washington Sound, straits of Fuca, Washington. On Nectomrengom dontutu Rathbun, at Kyska Harbor: L'ailaskal: Mazan Bay, Atka: Port Etcher, Alaska; Port Levashefl. Unalaska: Ilinlink Harbor, U'malaskat; off Round Island, Coal Harbor, Ungal Island: oft Sitkalidak laband. Alaska. On C'renyom allou Holmes, south of San Diego Bay. California.

Immature specimens were found off Seal Islands, Alaska, on Nectocrengon illescensis; ofl Rootook Island. Alaska. on Cirenyen commmemis; north of Bird Islands. Shumagins, Alaska: Gulf of the Farallones, California, on Cirmingon nigprommenlute; Coal Harbor, Uuga Island, on Vectocrengon dentuta: Captains Harbor, Unalaska, on Vectocrengon dentute: Sanborn Harbor, Nagai, Shumagins on Vectocrengon lar: Mazan Bay, Atka, on Fectocrangon crossaf; southwest of Hagemeister Island. Alaska, on Tectocrangon alaseenwis; northwest and northeast of Unimak Island, Alaska, on Vectocrungon ulascensis; Bering Sea, between Pribilof Islands and Cape Newenham, on Nectocrongome lar; Kouloulak. Bay, Alaska, on Mectecrangon lar: between Bristol Bay and Pribitof Islands, Alaska, on Nectocrengon lerr: Aretic Ocean, on Tectocrentom lari: Popoff Straits, on Tectocrengon crussect; between Bird and Nagai Islands. on Nectorerongon clluscensix.

List of Crangonide on which Argein fmyettensis is found parasitie:

Nectorrongom orifer Rathbun.
Nectocrungon lar (0wen).
Nertocrengon ulesecnsis Kingsley.
Nectocrangon errusse Rathbun.
Nectocrangem dentat, Rathbun.
Crengom nigromarruluta Lockington.
Crongon frenciscormm angustimema Rathbon.

C'ramyon dulli Rathbun.
C'mngen communis Rathbun.
Crangon propimput Stimpson.
Cranyon nigricauler Stimpsom.
Croungon uluseensis Loekingtom.
Cirengon aldsemsis elongrite Rathbun.
Cranfon allar Holmes.
Crenyon mumita Dama.

Immeture forms.-A female (probably in the first post-larval stage) has the thoracic processes well develoned, sometimes only on one side. lmer pleopoda of the first pair usually present: all the outer pleopoda,

Fig. 39.-Argela pligettensis. u, ionrsal view of IMMATVRE FEMALE: b, VENTRAL VIEW OF SAME. 10. the other four immer pleopoda and the uropoda are not developed at this stage. Marsupial plates are small and just developing. Male is similar to male found on adult female.

Immature female of a more alsanced stage has thoracie processes well developed, although perhaps not quite as long as in the preceding stage. Outer pleopodia and uropoda small. but all developed. The first two imner pleoporda are present: the other three may or may not be present. When present they are usually smaller than the first two, decreasing in size to the fifth pair, and sometimes difficult to diserern. The marsupial plates are larger than in the preceding stage, but not fully developed. The inculatory ponch never carries eggs in either of these stages. The male is similar to the male of the adult female.

Specimens of both immature stages were found on the same species and genera of host as the adult females.

A male in the cryptonisan stage was found on one immature female (in first post-larral stage).

Thoracie processes of ardult female. - In the adult female the thoracic processes may be quite rednced. In some specimens these processes are well developed, though never in all the specimens examined were they found as long as in the very young female or as in the figure given by Dana of the adult female. In other speeimens these processes are very small, and yet in many they were not even present. Not only is this variation found in specimens taken from diflerent

Fig. 39.-Argeia pugettensis. a, dorsal view of lamatire female; b, ventral, view of same, $\times 14_{2}^{\frac{1}{2}}$.
species and genera of host, but it was also trine of those found on the same species and gems of host. As a result of this ohservation on a large number of these forms, the conclusion must be maintained that these thoracic processes, well developed in the yomg female, of varying size and shape and sometimes so reduced as to be practically absent in the adult female, have no specitic valne whatever. Giard and Bonnier " have described their function as organs of fixation, which seems a reasonable conclusion and one capable of explaining why so much mariation oceurs in this respect with each individual parasite.
The following paragraph is taken from the above quoted authors:
The "lames épimériènnes (nos lames pleurales)" have, as we have already said, hut a very slight morphological importance. They are urgans of fixation developed to assure the position of the parasite in the lranchial cavity of the host and to protect it against the gill sweepers. Their form, their number, their dimonsions are therefore only in accorl with the peruliarities which the branchial carity presents, and one knows nothing more variable in the decapord Crustacea than the organization of the branchise * * * the presence of plenral lamelle in these animals is evidently simply a fact of adaptive convergence.

[^20]The thoratic processes are not, however, in Arfeia of epimeral origin. They arise from the posterior portion of the segments, while the epimera are placed above on the anterior

Fig. 40.-Abgela ploettensis, uryptoxiscan male. $\times 77 \frac{1}{2}$. division of the segments. It is, therefore, incorrect to speak of them as " lames plenrales."

In the adult, the pleopoda consist of five pairs of double-branched appendages. the outer branches being elongate, lamellar, attached on the under side very near the edge of the segments, and extending as a border, together with the uropoda, aromed the abdomen. The imner branches are close together and more or less rounded plates or lobes. Giard and Bonnier's interpretation of these facts is different. They consider the outer branehes of the pleopoda as the "lames pleurales" of the abdominal segments, but that this interpretation is untenable ean be clearly demonstrated from an examination of specimens, when the manmer of attachment and place of origin of these outer lamella can be seen.

The view taken in explanation of the abdominal appendages for Argeia is in accord with that held by Hansen for Parargeia. ${ }^{a}$

ARGEIA DEPAUPERATA Stimpson.

Argeia depmemerela Sthmson, Bost. Journ. Nat. Hist., 'I, 1857, 1. 71.-Ricifardson, Proe. U. S. Nat. Mus., NXI, 1899, p. 868.

Loculity. - San Francisco Bay, on Cromgon frumeriscorum.

PARARGEIA ORNATA Hansen.

Perorgeie muth Hansen, Bull. Mus. Comp. Zool. Harvarl College, XXXI, 1897, pl. 120-1シ2, pl. vi, figs. 1, 2.-Ricuardson, Proc. U. S. Nat. Mus., XXI, 1899, p. 869.

Locality.-Off Acapulco, Mexico, in the branchial cavity of Sclerocrangen procar Faxon.

BOPYROIDES HIPPOLYTES (Krфyer).

Bopyrus hippolytes Kroyer, Gronlands Amfipoder, 1838, p. 306 (78), pl. is, fig. 22; Monog. Fremst. Slagten Hippolytes Norleske Arter, 1842, p. 262; Voy. en Scand., Crust., 1849, pl. xxviin, fig. 2.-Edwaris, Hist. Nat. des Crust., III, 1840 , p. 283.-Stimpon, Proc. Acad. Nat. Sci. l’hila., 1863, p. 140.
Bopmroides uculimurginutus Stimpson, Proc. Acarl. Nat. Sci. I'hila., 1864, p. 156.

[^21]Gyge hippolytes Bate and Westwood, Brit. Sess. Crust., II, 1868, p. 2\%0.Buchnol\%, Zweite Deutsche Nordpolfahrt, 1874, p. 286.-Metzaer, Nordseefahrt der Pomm., 1875, p. 286.-Miers, Aun. Mag. Nat. Hist., (4), X゙X, 1877, p. 64 (14).—smotn in Harger, Proc. U. S. Nat. Mus., II, 1879, p. 157.-Harger, Rep. U. S. Fish Comm., 1880, Pt. 6, 1. 311.-Axel Ohlin, Bidrag till Kamedomen om Malakostrak-fannan in Bafln Bay och smith Sound, $1895, \mathrm{p} .19$.
Bopyroides hippolytes G. O. Sars, Crust. of Norway, II, Its. 11, 12, 1898, pp. 199, 200 , pl. lxxify, fig. 2.-Richardson Proc. U. S. Nat. Mus., NXIII, 1901, p. 578 .

Locality.-Cireumpolar in distribution.
Atlantic coast localities: Massachusetts, Bay of Salem, on Spirontocuris spinus, S. fubricii, and S. securifrons; Casco Bay on S. poluris and S. pusiola; Bay of Fundy, on S. spinus and S. pusiola; Halifax, Nova Scotia: Gulf of Maine, on S. securifioms and S. spimus; Eastport, Maine, on S. spinus; off Cape Cod, on S. secnrifioms and S. liljeborgii; $73^{\circ} 48^{\prime}$ N. lat., $80^{j} 30^{\prime} \mathrm{W}$. long., on S. polaris; $72^{\circ} 33^{\prime}$ N. lat., $71^{\circ} 30^{\prime} \mathrm{W}$. long., on S. poluris; $71^{\circ} 42^{\prime} \mathrm{N}$. lat., $73^{\circ} \mathrm{W}$. long., on S. poluris; $66^{\circ} 33^{\prime} \mathrm{N}$. lat., $61^{\circ} 50^{\prime} \mathrm{W}$. long., on S. poluris; $6 t^{\circ}$ $56^{\prime} \mathrm{N}$. lat., $66^{\circ} 18^{\prime} \mathrm{W}$. long., on S. poleris.

Pacific coast localities: Straits of Fuca, between Washington and Vancouver Island, on Spirontocaris suckleyi; Heceta Bamk, Oregon, on S. Jispinose; off North Head, Akutan Island, Alaska, on S.spinus; Bay of Islands, Adakh, on S. spimus; Port Etches, Alaska, on S. arcunte: West of Amaknak Island, Unalask:l, on S. arcmutu; Bering Sea, north of Umnak Island, on P'andulus borealis Kroyer; off south entrance to Akutan Pass, Alaska, on Pundalus montagui Leach; between Bird and Nagai Islands, Shumagins, Alaska, on P. montagni; Bering Sea, south of Pribilof Islands, on P. borealis Kroyer; Straits of Fuca, on Pandalopsis dispar Rathbun; Unalaska, and Lituya Bay. Alaska, on Spirentocuris brecirostris (Dana); Puget Sound on S. Irerirostris; Bering Sca, west of Pribilof Islands, on S. polaris (Sabine): Straits of Fuca, on S. suchleyi; Lituya Bay, Alaska, on S. suchleyi.

Also recorded from Greenland, Barents Sea, British Isles, coast of Norway; depth, 5 to 116 fathoms.
B. reutimurgimetus Stimpson is undonbtedly identical with B. lippolytes (Kroyer), which is circmmpolar in distribution, and infests the specics and genera quoted above common to both consts of North America.

BOPYROIDES LATREUTICOLA Gissler.

Bopyrus latreutes Spexce B.ite, Challenger Report, XXIV, 1888, p. 584.
Bopyroides latreuticolu Ricuaimson, Proc. U. S. Nat. Mus., XXIII, 1901, p. 579.
Locality.-Beaufort, North Carolina, on Latreutex ensiferns (Nilne Edwards); lat. $2 S^{\prime} 17^{\prime} \tau^{\prime \prime}$ N., long. $66^{-1} 17^{\prime} 37^{\prime \prime} \mathrm{W}$. ; lat. $31^{\circ} 15^{\prime} 42^{\prime \prime}$ N.,

Proc. N. M. vol. xxrii-03- 5
long. 15 6 $39^{\prime} 10^{\prime \prime} W^{r}$. on L. ensiferus; lat. $31^{\circ} 16^{\prime} \mathrm{N}$. . long. $71^{\circ} 50^{\prime} \mathrm{W}$. , on L. cnsiferus: $27^{\circ} 3 s^{\prime}$ N. lat., $76^{5} 23^{\prime} 24^{\prime \prime}$ W' long., on L. enxiferus; Bahamas, between Nassult and Andros, on L. insiferus; off South Carolina, on L. ensiferne: Bermuda, on L. ensiferus.

PROBOPYRUS PALÆMONETICOLA (Packard).

Bop!!rus (?) Leidy, Proc. Acad. Nat. Sci. Philad., 1879, Pt. 2, p. 198. - ILarger, Report I. S. Fish Comm., 1880, Pt. 6, p. 312.
Bopyrus palamoncticola Packard, Zool. for High Nchools and Colleges, 1881, p. 289. Bopyru: momhuttensis G1ssler, Scientific American, XLV, Sept. 3, 1881, p. 151.
Bopyrus pulimoneticolat Gissler, Am. Nat., XV I, 1882, pp. 6-12.
Probopyprus palamoncticola Stebbing, Hist. Crust., 1893, p. 416.
Bopyrus pelamoneticola Richardson, Proc. U. S. Nat. Mus., NXIII, 1901, p. 578.
Locality.-Atlantic City (Leidy), on Palxmonetes mulgaris (Say);

Fig. 41.-Probopyrus palemoneticola. a, dorsal view of female; b, yentral view ofsanie, $\times 4$
from New Hampshire to Florida (Carl (iissler), on P. culgaris: East Proridence, Rhode Island, on I. mulgerix; Acushnet River, Massachusetts, on I'. culyaris; Baldwin Lodge, Mississippi, on Pelxmonetessp.; Lantana, Florida, on Pelæmonetes.

Description.-Color of body white, with patches of black on the lateral margins of all the thoracic segments on both sides of the body. Head and abdomen also with a few scattered black mark-

FIG. 12.-PROBOPYRUS PALEMONETICOLA, LEG OF SIXTH PAIR OF ADULT FEMALE. $\times 39$. ings. Legs of both sides white: patches of hack on the rentral side of the lateral margins of both sides of the thorax. Incubatory lamella with patches of black on all the plates of both sides.
Head deeply set in thorax; anterior

Fig. 43.-Probopyrus PALEMONETICOLA, MALE. $\times 41$.
hosses present on the first four segments of the thorax at the anterior part of the sublateral margin; epimera evident as narrow plates lateral to the orarian bosses. The cpimera occupy the entire lateral margins on the last three segments. The segments of the abdomen
are distinct. The terminal segment is broad, more or less bilobed. The pleopoda consist of five pairs of double-branched lamellar appendages, closely crowded together on the ventral side of the abdomen.

The five pairs of incubatory lamelle surround a large open area normally filled with eggs. The first pair have the terminal lobe of the distal segment. large, well defined, and incurved.

All the legs have a high quadrangularly shaped expansion or carina on the basis.

Male with all the segments of the thorax distinct, and with the lateral margins contiguous. First four segments of the abdomen well defined at the sides, but fused in the middle of the dorsal surface. The last two segments form a single large piece, the fused terminal segment being indicated only by a small median point on the posterior margin. The body is a little more than twice as long as wide. Eyes are present. The rudimentary pleopoda are pairs of small oral processes one pair on each abdominal segment. The abdomen is about one and a half times as broad as long.

PROBOPYRUS ALPHEI (Richardson).

> Bopyrus sp. ? Fritz Müller, Jenaische Zeitschrift, VI, 1871, p. 68.
> Bopyrus alphei Riciandson, Proc. Wash. Acad. Sci., II, 1900, p. $158-159$.
> Cype sp. ? H. V. Wilson, American Naturalist, XXXIV, 1900, p. 353.
> Bopyrus alphei Richardson, Proc. U. S. Nat. Museum, XXIII, 1901, p. 578.

Locality.-Beaufort, North Carolina, on Alphens. heterochetis; mangroves, Rio Parahyba do Norte, Brazil, on A/pheus heterochelis. As previously said, ${ }^{\text {a }}$ this species is probably identical with the Bopyrus mentioned by Fritz Müller as being found

Fig. 4.-l'robopyRUS ALPHEI, MALE.

FIG. 45.-l'roboPyRis ALPHEI DORSAL VIEW OF FEMALE. Alphens. A difference. not only in the species, but even in the genus of host, makes this conclusion rather inconsistent with a certain hypothesis which these authors maintain, namely, that one and the sume species of parasite cam not infest diferent species of Crustacea. The genus Grap.icepom (itard and Bonnier is characterized by the fact that there are fon pairs of trimmons appendages elongated and fringed to the first four segments of the abdomen, those of the fifth segment being himmons. It does not seem
probable that Fritz Müller conld have referred his species to the genus Bopyrus had there been any such appendages to the pleon.

PROBOPYRUS BITHYNIS, new species.

Body of female with dorsal surface perfectly white, having only three small patches of black on one side at the post-lateral parts of the

Fig. 16.-Probopyrts bithynis. a, dorsal view of female; b, ventral view of same. +16 .
second, third, and fourth thoracie segments. Ventral side of the body with the first pair of incubatory lamelle almost entirely covered with patches of black, and with all the other

Fig. 47.-Probopyris bithynis, first LAMELLA OF MARSUPIUM, RIGHT SIDE. +10 . lamella of one side having patches of black, those of the other side being without these patches, with the exception in some specimens of the second lamella. Patches of black also on the ventral side of the lateral margins of the second, third, and fourth thoracic segments of one sidethe same side on which these markings occur on the dorsal surface and to which the incubatory lamelle, likewise marked with patches, are attached. Legs of both sides white and without any markings.

Head with antero-lateral comers produced into prominent processes; anterior margin between these processesstraight; posterior margin narrowly rounded. Length of head about equal to breadth. Eyes wanting.

The thoracie segments are distinctly defined. Ora-

Fig. 48.-ProropyRIS BITHYNIS, IEEG OF SIXTH PAIL OF ADULT FEMALE. +39 . rian hosses are present on all the segments, occupying only the anterior portion of the sublateral margin of the first fonr segments. The epimera are evident as narrow pieces lateral to the orarian bosses on all the segments.

The segments of the atodomen are distinct on the dorsal side. The lateral margins of the first tive segments are staight. The sixth or terminal segment is narrow, elongate, and hat at slight emargination in the middle of the posterior margin.

The pleopoda are five pairs of double-hranched appendages, the inner branches of the first pair being the largest and orerlapping in the middle ventral line. The uropoda are wanting.

The first pair of incubatory lamella are large and extend about half the length of the rentral side of the thorax. In fact all the lamelle are quite large, and encompass the marsupium, leaving only a comparatively small opening into the pouch.

All the legs have an extremely high expansion or carina on the basis.

The male has the thorax distinctly segmented. the segments not being widely separated at the sides. Body of male short and thickset, being only twice as long as wide.

The abdomen is a little more than one and a half times broader than long. The segments of the ab-

Fig. 49.-Probopyrés BITHYNIS, MALE, $\times 41$. domen are only indicated at the sides, being fused in the middle of the dorsal surface; they gradually decrease in size to the sixth or last, which is a narrow piece situated between the two lobes of the fifth segment and which does not reach to the extremity of those lobes. Eyes present. Body with markings of brown.
Six specimens of this species were taken by the U. S. Fish Com-

Fig. 50, - Probopyrus bithyinis, a, dorsal view of femade; b, ventral, view of same $\times 8$.
mission steamer Albutross from the Mississippi River near the Exposition Grounds in New Orlems, Lousianal Parasitic on Bithymis ohionis (Smith).

Type.-Cat. No. 290s9, U.S.N.M.
Ahout 6 specimens which should probably be referred to this
species were found in Escondido Riser, Nicaragua, 50 miles from Blactichls, hy C. W. Richmond; they are parasitic in the banchial (avity of Bithynis actenthurus (Wiegmamn).

They differ from the type as above described in having no anterolateral processes to the head of the female; in

Fig. 51.-Probopyrus bithyNIS, MALE. $\times 41$. having patches of black on the lateral margins: of all the segments of the thorax on one side of the body; and in having sometimes the third and also the fourth lamellax of the incubatory pouch with patches of black.

In the male the terminal segment has in some specimens a tendency to be bilobed.

PROBOPYRUS FLORIDENSIS, new species.
Body of female light brown, with head, abdomen, orarian bosses, and epimera light yellow, almost white. Markings of black are present all over thorax and a few black lines are present on the abdomen. The incubatory lamellie are almost entirely covered with black markings, so that the color is uniformly dark. The lateral parts of the thorax on the ventral side have markings of black, those of one side being in patches with yellow areas separating them, all the legs of this side being yellow. The legs of the opposite side are dark.

Fig. 52.-Probopyrus floridensis. a, dorsal. View of female; b, veitral view of same. $\times 12$.
Head deeply set in thorax, broad anteriorly with frontal margin nearly straight; posterior margin narrowly rounded; eyes wanted.

The segments of the thorax are distinet. Ovarian bosses are prominent on the anterior portion of the sublateral margin of the first four
segments; the epimera are present as marow plates lateral to the ovarian bosses. On the last three segments the epimera occupy the whole of the lateral margin.
The segments of the abdomen are distinctly separated on the dorsal side. The lateral margins are narrowly romuded. The terminal segment of the body is long and narrow, reaching beyond the lateral margins of the fifth segment, is rounded posteriorly, and with or without a minute excaration.

The pleopoda consist of five pairs of double-branched lamellar appendages.

The incubatory lamellax are large, encircling the incubatory pouch, learing only a small opening into the interior. The tirst pair of

Fig. 54.-ProbopiRUS FLORIDESSIS, LEG OF SIXTH PAIR of adULT FEMALE. $\times 39$. plates have the terminal lobe of the distal regment straight.

All the legs have a well rounded expansion or carima ahout the middle of the hasis.

Male with all the segments of the thorax well defined and widely separated at the sides. Body narrow, elongate, nearly three times as long as wide.

The abdomen has all the segments well defined at the sides, but fused in the middle of the dorsal surface. Length almost equal to the breadth. Terminal segment well defined, rounded posteriorly, and extending beyond the lobes of the preceding segment. The lateral margins of all the segments are rounded. Pleopodar are present in the form of pairs of small rounded processers, a pair on each segment of the abdomen. Eyes present.

One specimen was collected by Mr. W. C. Kendall at Satsman Islath, ahove St. Johns River, Florida: parasitic on I'elamonetex erilipes Stimpson. Two other specimens were obtained by the L. s. Fish Commission stemer Albathoss at Little River, Miami, Florida, parasitic also on Paliemonetes exilipess Stimp:on.

Type.-Cat. No. 29090 , U.S.N.M.

BOPYRINA ABBREVIATA, new species.

Body of addult female very asmmetrical, the one side being very much longer than the other. Cobor entirely white with a few batek dots seattered irregu-

 RI's FlouRHDESSIS, MA1F. - 11. larly orer the dorsal surface.

Head large, turned to the shorter side; frontal boarder produced in a romed bohe in the middle. Antero-lateral tagles produced in narrow tobes or procesises. Eyen small, distinct.

The segments of the thorax are distinctly defined. The epimera are distinct on the first three segments, where they occupy the anterior portion of the lateral margin; they are quite dis-

Fig. 5 ti.-Bopyrina abbreVIATA, HORSAL YIEW OF FEMALE. $\times 23$. tinct on the longer side of the body, but it is impossible to distinguish them on the shorter side. Ovarian bosses are not present on any of the segments. The epimera of the last four segments are not separated off from the segments; they occupy the entire lateral margin.

The abdominal segments are completely fused in the middle of the abdomen. On the lateral margin of the shorter side of the body there is no indication whatever of the coalesced segments. The first four abdominal segments are represented on the longer side of the body by four rounded lobes. The last two segmentsare completely fused, and are not indicated on either side.
The pleopodia, as far as could be made out, consist of four pairs of single hranched lamella. Three pairs were distinctly seen; the last pair are very indis-

Fig. 5s.-BoPYRINA ABBREVIATA, MAXILLIPEI. 41. tinct.

The first lamella of the marsupium on the

Fig. 57.-BOPYRINA ABBREVIATA, FIRST LAMELLA OF MARSUPIUM. $\times 27$. shorter side extends about one-third the length of the body; on the longer side, the first limella extends to the posterior margin of the second thoracic segment.

Male with head large, romoded in front. Eyes harge, irregularly shaped. All seven segments of thorax distinct. Abdomen narrower than thorax, and tapering to a narow extremity. In one specimen all six segments were more or less defined at the sides; in the other specimen only the first three. Length of abdomen about equal to one-third the length of the body.

Color white with markings of black or brown.
Nine specimens were collected by Mr. Henry Hemphill at Puntarasa, Florida, on Ilippolyte zostericola (Smith).
This species differs from Bopyrina virbii (Waltz), ${ }^{a}$ in the much smaller first lamellie in the female, the lamella of the shorter side of the marsupium extending but onethird the length of the body, while in B. wirbii it extends

Fig. 59.-BOPYRINA ABBREviata, male. $\times 77 \frac{1}{9}$. nearly to the abtomen, that of the longer side reaching only the posterior margin of the second thoracic segment, while in B. virbii it

[^22]extends to the posterior margin of the fourth segment: in not having any indication of segmentation on the shorter side of the abdomen, while in P. wirbii there is some indication; and in having the abdomen of the male rounded posteriorly with indications of segmentation at the sides more or less during its entire length, while in B. cirbii the abdomen is truncate posteriorly, with only the first two segments indiated.

The specitic name refers to the abbreviated tirst lamella of the 11:1"supium.

Type.-Cat. No. 29097 , U.S.N.M.
BOPYRINA UROCARIDIS, new species.
Body of female twice as long as wide
Head with frontal margin produced in a broadly rounded process. Eyes present abont the middle of the head as small black spots.

The segments of the thorax are distinct. The epimera are marked off by faint lines or impressions. The abdomen is composed of six segments, which are distinct at the sides but fused in the middle. The posterior margin of the terminal segment is broad, with a slight median excavation.

The pleopoda consist of

Fig. 60.-Bopyrina urocaridis. a, DORSAL VIEW OF FEMALE; b, VENTRAL VIEW OF SAME. $\times 23$. four pairs of single branched plates or lamellie, each pair directed toward the median line. There are no uropoda.

The incubatory ponch is a large area on the rentral side of the body, which is not closed over by the inenbatory lamellae. These lamellae consist of tive pairs of plates. the first pair of which have the second segment produced distally in a linguiform process.

Color uniformly light yellow with small black dots on the incubatorylamellae.

Male unknown.

Four specimens were found-three at Puntarasa, Florida, collected by Henry Hemphill,

Fig. 62.-Bopvelna C゙RocariDIS, FIRST LAMELLA OF MARSUPIUM, RIGHT SIDE. $\times 52$. and one from west Florida, collected by Mr. J. B. Henderson and Mr. C. T. Simpson, all parasitic on Crocuris longicumelute Stimpson.

Type. Cat. No. e!toss. U.S.N.M.

BOPYRINA THORII, new species.
Body of adnlt female asymmetrical, turned very much to one side. Color yellow with a few markings of black on one side of the thorax and in the center of the first three segments of the abdomen.

Head large with frontal margin produced in a rounded lobe, which is thrned upwad in the specimen: the antero-lateral amgles are produced into small processes. The eyes are black and distinct.

The segments of the thorax are all distinctly separated from each other. The epimera are distinct on the longer side of the body as long, narrow plates on the anterior portion of the lateral margin of the first four segments. Orarian

Fjg. 63.-BOPYRINA ThORII, a, DORSAL VIEW OF FEMALE; b, VENTRAL VIEW OF SAME. $\times 15$. hosses are not present on any of the segments.

The abdomen is composed of six segments, completely fused in the middle, but indicated on both lateral margins. The terminal segment is rounded posteriorly.

There are four pairs of single branched pleopoda. The marsupium is a large open area, normally tilled with eggs, and inclosed by tive parirs of lamellae. The first lamellie have the distal lobe rounded. The tifth lamella are narrow elongated plates.

Male unknown.
Only one specimen was obtained by the U.S. Fish Commission steamer Albatross at Key West, Floride The species is parasitic on Thor Atoridunus Kingsley.

This species differs from the preceding species chiefly in the form of the distal segment of the first lamelle of the marsupiom.

Type.-Cat. No. 29099, U.S.N.M.

BATHYGYGE GRANDIS Hansen.

Buthygyge grendis Ihssex, Bull. Mus. Comp. Zool., Harvard College, MNXI, 1897, pp. 122, 124, pl. vi, fige. 2, 2e-hichimbeon, Proc. U. S. Nat. Dus. XXI, 1899, p. 869.
Lerality. Ofl Acapulco, in the branchial cavity of Glyphocmentem spimetose Faxon.

LEIDYA DISTORTA (Leidy).

Cepon distortus Leidy, Journ. Acad. Nat. Sci., Phila., (2)) III, 1855, p. 150, pl. xi, figs. 26-32.
Leidye distorte Corvalid and Paneeri, Mem. R. Acad. Aci., Torino, (2), NL, 1561, p. 114.
Cepen divturtu: Habeer, Rep. U. S. Fiwh Comm., P't. 1, 1874, p. 57:3 (279); Proce. U. S. Nat. Musenm, II, 1879, 1. 157; Rep. U. S. Fish Comm., 1879, 1. 157;
 Meeres, III, Malacostraca, p. I22; Mittheil, aus der Zamo. Station zo Neapel, III, 1881, first hali, p. 182.
Phryrus distortus Walz, Arbeit. ans d. Zaolog. Insti. d. Univers. Wion, I Y 188^{2}, [1. 59.
(epmom distortus Ricinmbsos, Am. Nat., XXXIV, 1900, p. 309.
Leidyer ristorte Ricmardson, Proc. U. S. Nat. Museum, X.IIII, 1901, p. 579.
Lecelity.- Atlantic City, New Jersey, in the branchial carity of Uea pugilator.

IONE CORNUTA Spence Bate.

Iome cormuta Spence Bate, Proc. Zool. Soc. London, 1864, p. 668; Lord's Naturalist in British Columbia, II, 1866, p. 282.
Ione cornuth Bate and Westwood, Brit. Sessile-eyed Crust., II, p. 253.-Giard and Bonnier, Travaux de l'Institut zoologique de Lille et in Laboratoire Maritime de Wimereux, V , 1887, p. 77.-Richardson, Proc. U. S. Nat. Museum, XXI, 1899, p. 869.
Locality. - Esquimault Harbor, British Columbia, in the branchial cavity of Callianassa longimana; Vanconver Island.

IONE THOMPSONI, new species.

Body of female longer than broad.
Head deeply set in thorax, its anterior margin produced in a crenulated border. The antero-lateral lohes of the frontal border extend some distance beyond the sides of the head. The posterior portion of the head is evenly rounded. The first antenna are three jointed: the second pair are five jointed.

All the thoracic segments are distinct, with distinct epimera ("lames pleurales" of Giard and Bonnier), in the form of large rounded lohes, not elongated. In the first two segments thess epimeral lobes oceupy the anterior portions of the lateral parts of the segments; in the third segment they are placed about the center of the lateral margin; in the fourth and fifth segments they oceupy more of a posterior position; in the sixth and serenth segments they occupy the entire lateral margin. Orarian bosses are present on the first four segments, along the anterior portion of the segment.

The six segments of the pleon are distinct, and are produced laterally, each in a pair of elongated and jointed appendages, furnishod with mumerous mammilliform, branching appendages, originating from the posterior margin and extending downard. Thus there are six pairs of appendages corresponding to the "lames epimeriennes du pleon" of Giard and Bomner.

The pleopoda consist of four pairs of double-branched appendages and one pair of single-hranched appendages. ${ }^{a}$ The inner bramehes of

[^23]the first four pair's fold over the rentral side, meeting in the mediam line. These branches are all large and of nearly equal size and thickly tuberculate, the first two pairs being somewhat larger than the last two pairs. The outer branches of the first four pairs and the fifth pair of pleopoda consist of narrow, elongated appendages crenulated on their outer margins and thickly tubereulate. The appendages of

the sixth abdominal segment, the uropoda, are a pair of simple, cylindrical, elongated lohes, reenrved at their extremities, and not reaching heyond the mass of epimeral appendages.

The incubatory pouch is formed of five pairs of lamellæ, five issuing from one side and five from the other. The first pair are much smaller than the others, and are entirely concealed by the second pair.

The seren pairs of legs are all similar, and teminate in a prehensile hand. There are two expansions or carime on the basis of all the legs, the anterior one being only half as long ats the other.

Male with all the segments of the thorax distinet. Eyes wanting. Antemme conspicuons, six jointed. Antemula, three jointed. The segments of the abdomen are distinct, all six furnished each with a pair of elongated leaf-like tapering appendages.

F16. 65. -IGN1 THOMएSONI, MAXILI.IIED.

Two specimens were collected by Mr. G. M. Gray at North Falmouth, Massachusetts. They were found on Callianasuate stimpsimi.

The species is named for Mr. Millett T.

Fig. 66.-IONE THOMPSONI, FIRST LAMELLA OF MARSUPIUM. $\times 10$. Thompson, from whom the specimens were receised.
Type--Cat. No. 29091, U.S.N.M.

This species is apparently very close to I. cormuta, Spence Bate, from Vancouver Island. It agrees with I. cormuta in the albsence of the elongated epimeral lobes (lames pleurales), in which both species differ from I. thoracien (Montagu). Iome thompsoni and 1. cormuta are both much larger species than I. thoracica. In the deseription of I. cormutu," the author says that the coxa of the three posterior segments of the thorax are larger than the four anterior, and are produced posteriorly to a point. This is not true of I. thompswini, in which the epimera of the three posterior thoracic segments are smaller than

Fig. Gs.-IONETHOMPSONI, MALE, XS. those of the anterior segments, although they occupy the entire lateral margin, and they are rounded posteriorly and not

Fifr. 67.-IONE THOMPSON1, LEG OF SIXTH PAJR OF ADULT FEMAI.E. $\times 11 \frac{1}{2}$. produced to a point. Spence Bate also speaks, in reference to 1 . cornutr. of the antero-lateral "horn-like process of the cephalon" curving posteriorly." In I. thomp,wmi, these lateral processes or lobes extend out straight at the sides. Bate and Westwood, in describing I. commen, state that the last pair of imer satecular bauches of the pleopoda are almost obsolete. There are but four pairs of immer branches in I. thomensomi. The above quoted author: also deseribe the imer branches of the pleopoda as

[^24]grabually diminishing in size to the last pair, whereas the outer branches gradually increase in size. This is not true of I. thempson i. ${ }^{u}$

PHYLLODURUS ABDOMINALIS Stimpson.

Phyllorlurns abrlominetis Stimpsos, Journ. Bost. Soc. Nat. Hist., V I, 1857, p. 71.Lockington, Proc. Cal. Acal. Sci., Vil, 1877, Pt. 1, p. 57; Ann. Mag. Nat. Hist., 1878, pp. 299, 300.-Richardson, Proc. U. S. Nat. Mus., XXI, 1899, p. stis.

Lueality.-Puget Sound; Tomales Bay, California, "on Upoychia puyctensix;" San Francisco Bay on Upogebia pugettensis.

PSEUDIONE GIARDI Calman.

Preendione gierdi Calman, Ann. N. Y. Acad. Sci., XI, 1898, No. 13, pp. 274-281, pl. xxxir', fig. 5.-Riehardson, Proc.U.S. Nat. Mus., NXI, 1899, p. 869.
Loculity.-Puget sound, on Pugurus ochotensis (Brandt).

pSEUDIONE GALACANTHæ Hansen.

Pseudione grlacenthe Havsex, Bull. Mus. Comp. Zool. Harrard College, XXXI, 1897, 1p. 118-120, pl. v, fig. 22 i.-Richardson, Proc. U. S. Nat. Mus., NXI, 1899, p. 869.
Lencality.-Gulf of California, in the branchial cavity of Galacantha diomedcit rar. parcispina Faxon; near Flattery Rocks, Washington, parasitic on Jhmidu quedrispimu Benedict. (Collected by U. S. Fish Commission steamer Allatross.)

[^25]
PSEUDIONE FURCATA, new species.

Body of female longer than liroad, more or less orate.
Ifead with frontal horder; anterior margin nearly straight; posterior portion narrowly rounded. Head small and deeply immersed in thoma. Month parts and :antemier roncealed by first lamellia of marsupium. The first antenne are composed of three, the second of four joints.
The thorax has all the segments distinct. Orarian bosses are large and prominent on the first four segments. The epimera

Fig, 69.-Psetdione furcata, a, dorsal view of fedale; b, VENTRAL VIEN OF s.me. $\times 4$. on these segments are represented by narrow ridges lateral to the orarian bosses; those of the three last segments oceupy all of the lateral margin.

The segments of the abdomen are all distinct with the epimera prodnced in wide plates on either side of the narrow middle

Fig. 70.-PsectidiONE FIRCATA, FIRST LAMELLA OF MARSUPIUM, portion of the segment. The sixth or terminal segment is without epimera, and terminates posteriorly in two small, rounded lobes. The pleopoda are five pairs of smooth, marrow, elongated biramons appendages, all similar and equal in size, with the exception of the immer hranch of the first pair, which is exceedmgly large and is inwardly direrted, meeting the corresponding branch of the opposite side in the median rentral line, just below the incubatory pouch. All the remaining branches are directed post-laterally. The surfaces of all the lamella are guite smooth. The uropoda consist of a single pair of simple appendages, similar in shape and nize to the pleopoda.

The incubatory pouch consist, of five pairs of large lamella, overlapping in the median line. First pair of plates with the terminal lobe not detined.

There is a high and widely rounded expansion or carima on the basis of all the legs.

Male unknown.

Fiti, 71.-Psetthione FUrCATA, LEA: OF sixtil PAIR OF AIULTT FEMALE. $\times 20 \frac{1}{2}$.

Four specimens were collected on the eastern shore of Virginial hy Prof. H. E. Wehster. Host unknown. They were sent from Union College to the Smithsonian Institution.

Typer-Cat. No. 29093 , U.S.N.M.

PSEUDIONE CURTATA, new species.
Head very large, with wide anterior margin, almost straight; no frontal border. Antero-lateral portion produced in a small process on either side. Posterior portion widely rounded. Eyes wanting.

Fig. 72.-l'seudione curtata. a, dorsal View of female; b, ventral view of same. $\times 8$.
The segments of the thorax are distinct. The epimera are distinct as narrow plates on the extreme lateral margin of the anterior portion of the first four segments. Ovarian bosses are

Fig. 73.-Psetidione curTATA, FIRET LAMELLA OF MARSUPIUM. $\times 14 \frac{1}{2}$. prominent on the anterior portion of the first four segments. The epimera occupy almost all of the lateral margin of the three posterior segments.

The abdomen has the six segments distinct. All are produced laterally in small rounded epimera with the exception of the last; or terminal segment which is very small and rounded posteriorly.

The pleopoda are five pairs of large, hroad, smooth, leaf-like, donble-branched appendages not concealed on the dorsal side by the small epimeral plates of the abdominal segments, from which they project in full view.' The uropoda are a pair of single-branched, simple appendages, similar in shape to the branches of the pleopoda.

The marsupium is formed of five pairs of incubatory lamellæ, which overlap so as to completely encompass the rentral surface of the body: the first pair have the terminal lobe of the distal segment small, but well defined.
There are seven pairs of small legs, all similar in size and structure; a high triangularly shaped

Fig. 74.-Previdione CURTATA, LEG OF SIXTII PAIR OF ADULT FEMALE. $\times 39$. expansion or carina is present on the basis.

Color uniformly light yellow.
Male, two and one-third times longer than broad, with all seven segments of the thorax and all six segments of the abdomen distinct.

Eyes present. Abdomen ocerpies one-fourth of the entire length of the body.

Only one specimen wat found at Key West hey Henry Hemphill. Parasitic on Petrolisthes serspinusus ((ribbes).

Type- Cat. No. 2!m94, U.S.N.M.
MUNIDION PARVA, new species.
Head large, broader anteriorly than posteriorly, with wide frontal border. Eyes wanting. Anterior margin nealy straight, posterior margin narrowly rounded.

The segments of the thorax are distinct, the first two of which are short in the dorsal median line. The other five segments are ahout equal in length. Orarian bosses present on all the segments and oceupying the posterior portion of the sublateral part of the segment. On all the segments they are in the form of petiolated processes. The epimera are large plates which occupy the whote of the lateral margin of the segments. These plates are

Fig. 75,-l'seltionone CURTATA, MALE. $\times 23$. larger on the posterior segments than on the anterior ones.

The abdominal segments are all distinct. The first five are produced laterally in epimeral lohes, elongated and leaf-shaped, decreasing in size gradually from the first to the fifth segments. These lohes do not cover the dorsal surface

Fig. 76-MUNIDION PARVA. \quad, horsal ViEW of female; b, ventrai, view of same. $\times s$.
 of the abdomen, or obscure the small terminal segment, which is visible dorsally as a small rounded petiolated process.

The pleopoda are five pairs of douhle-branched elongated leaf-like appendages; the inner branches are smaller than the outer. The uropoda consist of a pair of hiramous appendages, each with one large outer and one small imer branch, similar in shape to the branches of the pleopoda.

The ventral side of the abdominal segments is keeled on the posterior margin. The pleopoda and abdominal epimerat are somewhat carinated on both surfaces.
The marsupimm is hounded by five paiss of incubatory lamellar, the third pair of which do not overlap in the median ventral line, so that a small opening is left into the incubatory pouch. The terminal tobe of the distal segment of the tirst pair is rery small, but well defined.

The seven pairs of legs are all similar; the basis is furnished with
Proc. N. M. vol. xxvii-03-b
an extremely high expansion, the anterior end of which is twice as ligh as the other end.

The male has all the segments of the thorax dis-

Fig. 77.-MuNidion PaRVA, FIRST LAMELLA OF MARSUPIUM. $\times 1 \frac{1}{2}$. tinct. The segments of the abdomen are fused into a single piece. There are no indications of the coalesced segments on the lateral margins of the abdomen, these margins being entire. The posterior portion of this segment is narrower than the anterior portion, its apex, however, being widely rounded. Its length is about one and onehalf times its greatest breadth. Eyes are present.

Only one specimen comes from the Straits of Fuca, taken by the U. S. Fish Commission steamer Allutross at a depth of 152 fathoms. Parasitic on Mumida quadrispina Benedict.

Type.-Cat. No. 29095 , U.S.N.M.
This species is a very much maller one than the type *pecies of the genus described by Dr. Hansen, ${ }^{\text {a }}$ being less than half the size of Mrnidion princeps. The present species differs from the type species in its much smaller size; in the relatively larger and differently shaped head: in the larger thoracic epimera (pleural

Fig.78.-Munidion PARVA, LEG OF SIXTH PAIR OF ADUITT FEMALE. $\times 20 \frac{1}{2}$. plates): in the differently shaped ovarian bosses: in the smaller and differently shaped abdominal epimera, which do not conceal the abdominal segments dorsally as in that species; in the differently shaped carina on the basis of all the legs; in the

Fift. 79.-MuniDION PARVA, MALE. $\times 23$. absence of the sinuous lateral margins of the abdomen of the male; and in the broader apex and greater length compared with the width of the abdomen of the male.

Family DAJIDむ.

DAJUS MYSIDIS Krpyer.

Dajus mysidis Krøyer, Voy. en. Scand., Crust., 1849, pl. xxvir, fig. 1.
Bopyrus mysidium Packarı, Mem. Bost. Soc. Nat. Hist., I, 1867, p. 295, pl. vin, fig. 3.

Leptophryxus mysidis Buchiolz, Zweite Deutsche Nordpolfahrt, 1874, p. 288 , pl. xI, fig. 2.
Dajus mysidis Lütren, Crustacea of Greenland, 1875, p. 150.G. O. Sars, Arch., Math. Nat., II, 1877, p. 354 (254).Sumtif in Harger, Proc. U. S. Nat. Mnseum, H, 1879, p. 158.-Harger, Rep. U. S. Fish Comm., 1880, I't. 6, p. 312.G. O. Sars, Crustacea of Norway, 11, Pts. 11, 12, 1898, p. 223-225, pl. xxym, fig. 1.-Ricilardson, Proc. U. S. Nat. Museum, XXIII, 1901, p. 579.
Locality-LLabrador; Greenland; Kingigtok; Duck Island; Murehison Sound; $73^{\circ} 48^{\prime}$ N. lat., $80^{\circ} 30^{\prime} \mathrm{W}$. long.; $72^{\circ} 33^{\prime}$ N. lat. $71^{\circ} 30^{\prime} \mathrm{W}$. long; $71^{\prime} 57^{\prime}$ N. lat., $73^{\circ} 56^{\prime} \mathrm{W}$. long.; $666^{\prime} 33^{\prime}$ N. lat., $61^{-5} 50^{\prime} \mathrm{W}$. long.;

[^26] 1897, pp. 115-117, pl. iv, figs. 2-2c; pl. v, figs. 1-1d.
$6 t^{\circ} 56^{\prime}$ N．lat．， $66^{\circ} 15^{\prime} \mathrm{W}$ ．long．：also recorded from west coast of Nor－ way，Kara Sca，Sabine Island，Spitzberg，Jan Mayen，Murman coast．

Deptllu．－3 to 20 fathoms．

F：mily CRYPTONISCID E．

CLYPEONISCUS MEINERTI Giard and Bonnier．

Clypeomiseus meinerti Giard and Boxner，Bull．Seientifique de la France et de la Belgique，（4）XXV，1893，pp．421－436， 44.
Lnculity．－Greenland（Godhavn）， 8 to 10 fathoms；Nova Zembla （Jugor Schar）， 6 fathoms，（Giard and Bonnier）．Parasitic in the incubatory pouch of Symidoter norlulosa（Krøyer）．

SOUTI AMERICAN EPICARIDEA． EPICARIDEA or BOPYROIDEA．

Family BOPYRIDE．

STEGOPHRYXUS RESUPINATUS（Müller）．

Bopyrus resupinatus Mëcler，Jen．Zeitschrift Nat．，VI，1871，pp．57－60．
Phry．cus resupinatus Stebbing，Hist．Crust．，1893，p． 409.
Stegophry．rus resupinatus Trompson，Report U．S．Fish Comm．，1901，p． 56.
Loculity．－Brazil，on a Pagurid．
PSEUDIONE GALACANTHE Hansen．

Fig．80．－Pseudione galacanthe．a，dorsal view／ of female；b ，ventral view of same．$\times 8$ ．

a

b

Fig．81．－PSEUDIONE GALACANTIEA． a，MAXILLIPED，$\times 11 \frac{1}{2} ; b$ ，FIRST LAMELLA OF MARSIPIUM，RIGHT sいいた．$\times 15$ ．

Fig．S2．－I＇selvione GA\＆ArANTHE， MALE．－ 23.

Pisudione gulacenthe Hanser，Bull．Mus．Comp．Zool．Harvard College，CXXI，
 1899, 1． 869.

[^27]Locality.-Ofl east coast of Patagonia, two specimens parasitic on Memide submefowe. Collected by U. S. Fish Commission steamer Llbutross.

PSEUDIONE TUBERCULATA, new species.

Head small, with frontal border; anterior margin straight; posterior portion narowly rounded.

Segments of thorax distinct. Ovarian bosses present on antero-

Fig. 83.-Pseudione tuberculata. a, dorsal view of female; b, ventral view of same. $\times 4$.
lateral part of first four segments. Last three segments withont bosses. 'The epimera occupy only the small posterior part of the lateral margin of the first four segments, and are not distinctly separated from the segments on the dorsal side; they occupy the whole of

Fig. 84.-1'selt-DIONETUBERCULATA, MAXILLIPEI, $\times 5$.

Fig. 85.-Psevdione tuberculata, distal segMENT OF FIRST LAMELLA OF MARSUPIUM. $\times 10$.

Fig. 86.-Pseudione TUBERCULATA, LEG OF SINTH PAIR OF ADULT FEMALE. $\times 11 \frac{1}{2}$.
the lateral margin of the last three segments, and are in the form of large plates, extending somewhat backward.

The segments of the abdomen are distinct. The epimera of the abdominal segments form large plates on either side of the segments. They are present on all but the

Fig. 87.-PseuDIONE TUBERcUlata, male. $\times 8$. last or terminal segment, and are not distinctly separated from the segments. The epimera amost entirely comeeal, on the dorsal side, the underlying pleopoda. The terminal segment is bilobate posteri-
orly, with a small median point. The posterior edge of the rontral side of all the abdominal segments is strongly keeled. The phemporla are five paiss of double-hanched, broad, leaf-tike appendages, distinctly tuberculate. The inner branches of the first pair oremap in the median rentral line.

The marsupium is composed of five pairs of strongly tuberculate lamellae, orerlapping in the median ventral line of the thoma, and entirely inclosing the incubatory pouch.
There are seven pairs of legs similar in shape and structure. A wide expansion extends the entire length of the basis.

Color, uniformly light yellow.
Males, three and a half times longer than broad, with all seven segments of thorax and all six of abdomen distinct. Eyes wanting. Abdomen occupies more than one-third of the entire length of the body.

About thirteen specimens were obtained by the U. S. Fish Commission steamer Albatross, from off Port Ortway, Patagonia, at a depth of 1,050 fathoms. Parasitic on Lithodes diomedere Benedict.

Type.-Cat. No. 29092, U.S.N.M.

PSEUDIONE PAUCISECTA, new species

Body of female orate, twice as long as wide, twisted somewhat to one side. Color, uniformly light yellow.

Head very large, triangular in shape, with frontal margin widely

Fig. 88.-Pseudione palcisecta. a, dobsal view of female; b, ventral view of same. \times S.
rounded or arcuate. A wide frontal border, somewhat irregular in outline, surrounds the anterior portion. Eyes alsent. First pair of antemme consist of three joints; sccond pair of tive joints.

Ovarian bosses present on the anterior portion of the tirst four thoracie segments; lateral to these, on the anterior portion of the segments, are the wide epimeral plates, which have a tendeney to be irregular along the lateral margin. The epimera occupy the whole of
the lateral margin of the three posterior segments, and are produced laterally into irregular processes.
The segments of the abdomen are distinct with the epimera extending as narrow, elongated plates on either side of the

Fig. 89.-Psecdione Padcisecta, first LAMELLA OF MARSUPIUM. $\times 10$. first five segments. Terminal segment knoblike in appearance with well-rounded margins.

Pleopoda consist of five pairs of double-branched, narrow, elongated tapering lamelle directed backward, the imner branches being smaller than the outer branches in the last two segments. The wropoda are a single pair of lamella, both lamellæ being irregular in outline.

The five pairs of incubatory plates completely inclose the incubatory pouch, meeting in the median ventral line. The terminal lobe of the distal segment of the first pair is not defined. All the legs have a high and narrowly rounded expansion or carina about the middle of the basis.
The male is twice as long as broad. Head transverse; eyes absent. Segments of thorax of equal length. Abdomen short, occupying less than one-sixth of the entire length and composed of

Fig. 91.-Pseudione PAUCISECTA, MALE. $\times 14_{2}^{1}$. only five segments, all distinct, with terminal segment small, rounded.

Fig. 90.-Pseudioñe Patcisecta, LEG OF SIXTH PAIR OF ADULT FEMALE. $\times 20 \frac{1}{2}$.

Only one specimen was taken by the U. S. Fish Commission steamer Albutross off Port Ortway, Patagonia. Parasitic on Menide curvipes Benedict.

Type.-Cat. No. 29096, U.S.N.M.
UROBOPYRUS, nevv genus.
UROBOPYRUS PROCESS \notin, new species.
Body of adult female somewhat asymmetrical, and a little broader than long. Color, uniformly white.

Head with frontal margin produced and upturned; posterior margin widely rounded. Markings of black, which may represent eyes, present on the antero-lateral angles of the head.

All the segments of the thorax are distinct. Orarian bosses are present on the anterior portion of the first four segments. The epimera of these segments are represented by narrow plates on the onter margin of the segments, lateral to the orarian bosses. On the three posterior segments the epimera are produced as large plates, larger on one side than on the other, beyond the margin of the segments.

All six segments of the abdomen distinct. The lateral margins are romnded, the lateral parts not being produced. The terminal segment is bi-lobed.

The uropoda are a pair of double-branched appendages attached to the terminal abdominal segment; the imer branches are smaller and more slender than the onter bramehes.

The pleopoda consist of five pairs of double-hramehed, elongated lamellax, the imner hranches heing smaller than the onter and directed inward, the outer bramehes extending beyond the margins of the abdomen.

The ineubatory lamella consist of five pairs of plates affixed to the sides of the thorax, five on either side. They do not completely cover

Fig. 92.-Urobopyrus processi. a, dorsal view of female: b, ventral view of same. $\times 1 f_{4}$.
the incubatory pouch, but a large area remains open, which is normally filled with eggs.

All seven pairs of legs present.
Male unknown.
A single specimen was obtained by the U. S. Fish Commission steamer Allatross, off the east coast of South America, lat. N. $6^{\circ} 59^{\prime} 30^{\prime \prime}$, long. W. $344^{\circ} 47^{\prime}$. Parasitic on Processa canalicnluta Leath.

This genus is very close to Probopyrus Giard and Bomnier, but differs in having uropoda, which are altogether wanting in that gemus.

Type.-Cat. No. 29098 , U.S.N.M.

CRYPTIONE ELONGATA Hansen.

Cryptione elonguta IIansen, Bull. Mus. Comp. Zool. Harvard College, NXXI, 1897, pp. 112-115, pl. 111, figs. 5, $5^{\text {a }}$; pl. 15, figs. 1-1g. -Richabisox, l'me. U. S. Nat. Musem, XXI, 1899, p. S69.

Locality.-Near the Galapagos Islands, in the bramehial carvity of Nemutocarcinus ugussizii Faxon, which occurs ats firr north as $\dot{\lambda}$ (eapulco, Mexico.

MUNIDION PRINCEPS Hansen.

Mumidion princeps Hassex, Bull. Mus. Comp. Zool. Harvard College, NXXIT, 1897, pp. 115-117, pl. 15, figs. 2-2゙; pl. v. fig. 1-14.
Locality.-Cocos Island, lat. $35 s^{\prime} 20^{\prime \prime}$ N., long. $81^{\circ} 36^{\prime} \mathrm{W}$. . on Menidu refulgens; off the coast of Eenador, on M. refillgens Faxon. Depth, 112 fathoms.

GRAPSICEPON FRITZII Giard and Bonnier.

Grupsicqpon fritziin (inmor and Bonvier, Travaux de l'Institut zoologique de Lille et du Laboratoire de Zoologie maritime de Wimereux, $\mathfrak{~}$ ', 1887, p. 70.
Loculity.--Branchial cavity of a Greppsus (Leptofretpsus. rugulosus?) found on the coast of Brazil, at Desterro.

Family ENTONISCID ※.

CANCRION CANCRORUM (Müller).

Entoniscus cancrortm Müller, Für Darwin, figs. 16, 41. (Translated in Bull. Sci. du Norl, XIV, 1882, pp. 422 and 449); Jen. Zeitschrift Nat., VI, 1871, pp. 53-56, pl. ı11, figs. 1-3.
Cancrion cancrorum Grard and Bonnier, Comptes rendus de l'Acad. des. Sci., 1886; Travaux de l'Institut zool. de Lille et du Laboratoire de Zool. maritime de Wimereux, 1887, pp. 239-240. -Stebbing, Hist. Crust., 1893, p. 407.
Locality. - Brazil, on several species of Nantho, at Desterro.

ENTONISCUS PORCELLAN Æ Müller.

Entoniscus porcellanæ Mülder, Archiv für Naturgeschichte, Jahrg. XXVIII, 1862, pp. 10-17, pl. if; Jen. Zeitschrift Nat., VI, 1871, plp. 53-56.-G1ard and Bonnier, Trav. de l'Institut Zool. de Lille et du Laboratoire de Zool. maritime de Wimereux, 1887, p. 232.
Locality.--Brazil, on I'mcellana sp. ?, at Desterro.

ENTONISCUS BRASILIENSIS Giard and Bonnier.

Entomiscus No. 2, Fritz Mǘller, Jenaische Zeitschrift für Naturwissenschaft, V'1, 1871, p. 53.
Entoniscus brasiliensis (ilard and Bonnier, Trav. de l'Institut zool. de Lille et du Laboratoire de Zool. naritime de Wimereux, 1887, p. 235.

Locality.-Desterro, Brazil, parasitic on Porcellanu sp.?
This species may be identical with the preceding species.

ENTONISCUS CREPLINII Giard and Bonnier.

Entoniscus No. 3, Fritz Müller, Jenaische Zeitschrift für Naturwissenschaft, VI, p. $54,1871$.

Entomiscus creplinii Gıris and Boxnter, Travaux de l'Institut zool. de Lille et du Laboratoire de Zool. maritime de Wimereux, 1887, p. 236.
Locality.-Desterro, Brazil, parasitic on P'orcellana creplinii. F. Müller.

ENTIONE ACH ÆI Giard and Bonnier.

Entoniscus No. 4, Futz Müller, Jenaische Zeitschrift für Naturwissensehaft, VI, p. 53, 1871.
Eutiome achei Ghard and Bonnier, Travanx de l'Institut zool. de Lille et du Laboratoire de Zool. maritime de Wimereux, 1887, p. 237.
Loculity.-Desterto, Brazil, parasitic on Achæus sp.!

Family CRYPTONISCIDA.
 CRYPTONISCUS PLANARIOIDES Müller.

Cryptoniscus plumarioides Müller, Jen. Zeitschrift Nat., VI, 1871, pp. 61-64.Stebbing, Hist. Crust., 1893, p. 402.
Locelity. - Brazil, on Peltogaster purpureus. MICRONISCUS FUSCUS Fritz Müller.

Microniscus fuscus Müllek, Jen. Zeitschrift Nat., VI, 1871, p. 65.
This form is probably the Microniscus stage in the development of some Epicarid. ${ }^{1}$

[^0]: "The term tribe was originally used by Latreille for subdivision of family, and such was for a time the general usage. The history of the group has been indicated loy Dr. Gill in his address on Some Questions of Nomenclature (Science, 11. s. IV, 1) 598 , etc.).
 ${ }^{b}$ The table has been modified to include the tribe Phreatoicoidea. Other slight changes have been made also. See Surs, Crustacea of Norway, II, 1899, p. 3.

[^1]: ${ }^{a}$ The second name given above for the tribe or smperianily was sugested by Dr. Theodore (iill in order that the nomenclature might be more uniform.

[^2]: a The second name given above for the tribe or superfamily was suggested by Dr. Theodore dill in order that the nomenclature inight be more uniform.
 b In Ityssum vermiformis Inaswell, a member of this family, all the segments of the body are extremely nurrow and elongated, giving the body an exceedingly long appearance.

[^3]: a.Jonirella Bonnier, a new genus of Asellida is described, Ann. Unir. Lyon, XXVI, 1896.
 b Chelonidium l'feffer is a synonym of I'lukerthrimm Chilton.

[^4]: a The dorsal branch in these genera is not homolugous with the epimeral lamellie of the abdomiral segments of lone Latreille and Kepon Duvernoy.

[^5]: Proc. N. M. yol. xxvii- $0 ; 3-2$

[^6]: a Journal of Morphology, NI, 1895, f1p. 6:3-155 from which this account is taken.

[^7]: a Prof. L. Roule also makes this statement about the eqger of Aselus and I^{\prime}. $n^{*}-$ cellis, hat Dr. MeMurrich has pointed out that his ohservations are erromeons. Athough (iard and Bonnier have figured an eighteeell stage of the egrg of Iombmion, in whieh the sogmentation appears to be complete and mequal, there may have beren some error of observation, and matil more thorough work is dome on this gromp it is not wise to aceppt the results so far ohtained, which are so very difierent from what has been foumb to be true of the wher Isopods.

[^8]: "For above list refer to Stebbing, 'Trans. Zool. Soce. London, NII, I't. t, 1ssib, P. 1.
 ${ }^{b}$ The above nomenclatmre was suggested hy Dr. Theorlore (ibll for the primary marine regions or realms in place of the zones nsed by Dana. Proce diol. sot. W'ashington, II, 1885, 11'. 1-ti6.

[^9]: a Bathynomus giguntous Milne Edwavds coming from the Caribbean Sea is not an exception, herause it is found at great depths, where the temperature of the water is very low.
 b The above nomenclature was suggested by In. Theorlore (iill for the primary marine regions or realms in place of the zomes used by Dana. Proc. Biol. Soc. Washington, 11, 1855, 115. 1-66.

[^10]: a Bull. Mas. Comp. Yool., Harvarl ('ollege, 1897, NXXI, No. 5, p. 10s, pl. int, figs. 2, 3.

[^11]: "Bull. Mus. Comp. Zool., Harvard College, XI, No. 4, 188:3, pp. 97-98; pl. mi, figs. $2-2 a ; p l . \operatorname{lv}$, fig. 1.

[^12]: "11. J. Hansen. Cirolanidx, etc., Vidensk. Selsk. Skr., 6te R. Naturvidenskabelig og Mathematisk Aid. 5te Bd. 3, 1. 326.

[^13]: pl. xxxin, fig. 13.
 ${ }^{b}$ Catalogne of the Litalk and sessile-eyed Crustacest of New 'eatand, 1876, p. 109, pl. 151, fig. 3.

[^14]: "Naturhistorisk Tidsskrift, (3) MIV, 188:3-84, pr, 360-362, pl. wr, tigs. 1-丷.

[^15]: "Prox. Limn. soc. New south Wales, V', 1sso, pp. tit, tin.

[^16]: "Journ. Limn. Foc. London, XVI, 1883, p. 6is.
 ${ }^{b}$ Cape of Gool Hope, Dept. of Agriculture: Marine Investigations in houth Afriea, No. 12, 1901, Pp. 50-59.
 ' The information in regard to the nmmber of joints to the palp of the maxillipeds in stenosomu was kindly furnished me hy Rev. T. R. R. Stebbing.

[^17]: as'chicedte and Meinert.-Naturhistorisk Tidsskrift (3), NIV, pp. 334-335.

[^18]: "Naturhistorisk Tidskrift, XIV, pp. 3:3̄-is40, pl. Xin, figs. 11-15.

[^19]: a Crustacea of Norway, II, 1899, [14. 193-195.
 6 Item, pp. 198, 199.

[^20]: "Contrihutions it l'étude des Bopyriens. Travaux de l’Institut zoologique de Lille et du Lahoratoire de Zoologie maritime de Wimereux, V', 1887, p. 61.

[^21]: "Pull. Mus. Comp. Zool. Harvarl College, XXXII, No. 5, Pt. 22. The Isopoda, 1897, p. 121.

[^22]: (Kossman, Zeitwchrift für Wissenschaftliche Zoologie, NXXV, 1881, 5. 666-679, pls. xxxiv-xxiv.

[^23]: "The young female of Iome thompsomi has the last pair of peoporda double-hanched, the two branches similar, however. The inner branches of the first four segments are quite different from those of the outer branches, as is true of the adult femate, and lie folded over the abdomen as in the adult deseribed.

[^24]: "Proc. Zow, For. Lomidon, 1864, 1. 66s.
 b British Messile-eyed (rustacea, II, 1867, 1. 254.

[^25]: ${ }^{a}$ The descriptions of the type species, Ione thoracica (Montagu), are so unsatisfactory and inarlequate and so much at variance when compared that the only action to take, under the circumstances, is to place the form described above tentatively in the genus Tone Latreille and to give it a new specific name.

 Montagn and Kossman describe the pleon of Ione thoracica as composed of six segments, all of which are prodnced laterally into arborescent, branching lamellæ. Montagu in his figure, however, represents but four segments, with five pairs of lranching lamelle. Milne Elwards, Bate and Westwood, and Giard and Bonnier describe six segments, with only the first five produced into ramified appendages. The appentages of the last segment are clescribed as simple, recurved.

 IIontagu mentions also six simple, recurved appendages, of which the last two are larger than the rest. Kossman describes six pairs of double-branched pleopods (pleopodoiden) and also a single pair of simple, cylimtrical uroporla (pleopoden). Milne Elwards says that the first (appendages of the first five segments?) carry at their hase a little "écaille" folded beneath, under the abdomen. Bate and Westwool refer to the pleopoda in the following way: "Several of the basal appendages are, moreover, furnished at the base beneath with a small scale, lying beneath the tail." Finally, Giarl and Bonnier, characterize these appendages in this way: "Rames rles Pléoporles comporés de six articles."

 The species herein described as new seems close to Ione cornuta Spence Bate. In the original lescription of Ione cormutu the pleopoda are simply tlescribed as "long and fringed with arborescent branchise." Bate and Westwood mention the jointerl character of these appendages (pleural lamellee), and give a mueh fuller description of the species.

[^26]: "Bull. Mus. Comp. Zool. Harvard College, NXXI, No. 5, Pt. 22, The Isopota,

[^27]: ＂This species is again figured，for the reason that it is foum parasitic on a different species of host，and is from a different locality from that of the type specimen．

